
Finite-element method for calculation of the effective permittivity of random
inhomogeneous media

Viktor Myroshnychenko and Christian Brosseau*
Laboratoire d’Electronique et Systèmes de Télécommunications (Unité Mixte de Recherche CNRS 6165),

Université de Bretagne Occidentale, CS 93837, 6 avenue Le Gorgeu, 29238 Brest Cedex 3, France
(Received 22 March 2004; revised manuscript received 22 September 2004; published 4 January 2005)

The challenge of designing new solid-state materials from calculations performed with the help of computers
applied to models of spatial randomness has attracted an increasing amount of interest in recent years. In
particular, dispersions of particles in a host matrix are scientifically and technologically important for a variety
of reasons. Herein, we report our development of an efficient computer code to calculate the effective(bulk)
permittivity of two-phase disordered composite media consisting of hard circular disks made of a lossless
dielectric(permittivity «2) randomly placed in a plane made of a lossless homogeneous dielectric(permittivity
«1) at different surface fractions. Specifically, the method is based on(i) a finite-element description of
composites in which both the host and the randomly distributed inclusions are isotropic phases, and(ii ) an
ordinary Monte Carlo sampling. Periodic boundary conditions are employed throughout the simulation and
various numbers of disks have been considered in the calculations. From this systematic study, we show how
the number of Monte Carlo steps needed to achieve equilibrated distributions of disks increases monotonically
with the surface fraction. Furthermore, a detailed study is made of the dependence of the results on a minimum
separation distance between disks. Numerical examples are presented to connect the macroscopic property
such as the effective permittivity to microstructural characteristics such as the mean coordination number and
radial distribution function. In addition, several approximate effective medium theories, exact bounds, exact
results for two-dimensional regular arrays, and the exact dilute limit are used to test and validate the finite-
element algorithm. Numerical results indicate that the fourth-order bounds provide an excellent estimate of the
effective permittivity for a wide range of surface fractions, in accordance with the fact that the bounds become
progressively narrower as more microstructural information is incorporated. Future directions of the active
field of computational studies of the structure-property relations for composite systems are briefly discussed.
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I. INTRODUCTION AND MOTIVATION

A. Overview

From biology to geology to electronics, a number of ma-
terials involve composites. Although some of these materials
are found in nature, laboratory processing is often needed for
efficient use. Others are entirely synthetic, created by chemi-
cal and physical processes. Certain materials are multiphase
composites designed for certain desirable response properties
otherwise unavailable. With regard to linear macroscopic
electromagnetic response of these materials, the inconsis-
tency between theory and experiment emphasizes the promi-
nence of some kind of phenomenology in this problem[1–3].
It might be noted that within a continuum approach, the issue
of electromagnetic properties is analogous to the thermal or
elastic properties of heterogeneous solids, the permeability
of porous media, and the rheology of hydrodynamic suspen-
sions. In recent years, a great deal of effort has been directed
towards a fundamental understanding of the effective trans-
port properties of composites that relate average flux fields to
average gradient fields[4–6]. Taking into account a great
diversity of physical processes, these studies are capable of

answering many practically important issues of condensed-
matter physics and materials science. However, many models
for determining the effective permittivity discussed in the
literature are heuristic in nature, applying only to a specific
combination of particles-host medium. This is not to say that
we have not learned an enormous amount about the dielectric
properties of condensed-matter systems, both from experi-
mental and theoretical studies. Considerable controversy sur-
rounds the problem of determining the effective transport
properties in composite materials. One important, and as yet
not completely answered, question in this area concerns the
observed similarities of the permittivity vs volume fraction
of inclusion variation among various types of stochastic het-
erogeneous systems. Each individual system is of course
unique unto itself but, consistent with this diversity, there are
overall similarities which one would like to explain. On the
experimental side, results are being consolidated, mainly due
to a considerable improvement in the quality of the samples
compared to those used in the early studies of composite
materials.

Many theorists have examined this subject by performing
ab initio calculations, e.g., density-functional theory(DFT)
[7], the finite-element method(FEM) [8], the different vari-
ants of the boundary integral equation(BIE) [9–11], the first-
principles molecular dynamics[12], the finite integration al-
gorithm [13], the Monte Carlo (MC) algorithm [14],
multipole moments[15,16], the genetic algorithm[17], the
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finite-difference-time-domain(FDTD) method[18], and the
fast Fourier transform(FFT) method[19–21], on a variety of
systems where only two phases are present. Related to the
problem at hand, the notions of random close packing(RCP)
and maximally random jamming have been discussed by
Torquato and co-workers[22–24]. The main problem is that
real calculations are not easy, and the challenge is to find a
reasonable balance between the choice of method, desired
accuracy, and computational expense. The most desirable ap-
proach for fully harnessing the dielectric properties of het-
erostructures at the macroscale must be inherently multiscale
(both in time and space) since its evolution is mediated by a
combination of atomic level dynamics, defect physics, non-
equilibrium thermodynamics, and transport kinetics. Most
numerical analyses reported thus far have fallen short of this
goal for a variety of reasons. While numerical approaches
may be exact in principle, the true form of the randomness is
unknown. The high computational cost of averaging over a
large set of system configurations makes it difficult to obtain
well-converged estimates of the observables. Current re-
search is pushing available approximations to the description
of fluctuations on the hierarchy of length scales which are
relevant to the problem. Actually, the cross-fertilization be-
tween computational and analytical work in the area of com-
posite materials is quickly growing. Unfortunately, current
feasible representations for thea priori knowledge of the
microstructure of the composite, such as the correlation func-
tions that specify the average microscopic arrangement of the
constituents, require significant experience in the construc-
tion of reliable and solvable microstructures. The primary
reason for the limitation of “exact” calculations of the prop-
erty of interest, especially for continuum models, has been
the lack of efficient algorithms suited to generate collections
of random packings of particles(disks, spheres). It is perhaps
fair to observe that theories that start with similar algorithms
may arrive at different descriptions of their properties. Yet
even if this “disorder representation problem” were solved in
its entirety, the would-be-composite designer would still face
the formidable tasks of(1) finding the starting entities that
will maintain their structural integrity throughout the synthe-
sis process, and(2) controlling the morphology he or she
wished to engineer. As testimony to these difficulties, it is
not uncommon to find in the literature disagreements over
the predictions of the porosity, mean coordination number,
and radial distribution function[22,25]. We will return to this
point later. But let us take a step backward and discuss the
effective-medium approach within continuum models.

B. Basic facts about the effective-medium approximation

For decades, other theorists have developed approximate
analytical theories to describe the electromagnetic properties
of macroscopically inhomogeneous media. The main thrust
of this field has so far been extensive exploration of their
applications, although some of their fundamental properties
were characterized experimentally. Given the empirical na-
ture of calculations of the complex effective permittivity of
disordered materials, and the lack of direct comparison with
experiments for validation, first principlesab initio calcula-

tions are an issue at the core of contemporary condensed-
matter research. Physicists have been engaged in this area at
least since Maxwell[26] (in particular, his method for calcu-
lating the conductivity of a simple-cubic lattice of spherical
inclusions), but it was not until the 1930s, primarily under
the influence of Bruggeman’s pioneering work[27], that
there was a systematic attempt to establish the foundations of
the self-consistent effective-medium approach and bring it
into the physical mainstream. As already pointed out,
effective-medium theories(EMT) and generalized effective-
medium theories(GEMT), as well as other mean-field-like
approximations[28–30], are believed to represent the gross
features of the electromagnetic behavior of heterostructures.
In general, this is done by averaging all pertinent variables
such as the induction field vector and the permittivity over
the composite medium viewed as a continuum consisting of
a matrix with inclusions. This suggests that, in the long-
wavelength limit, the observed bulk material should be de-
scribed (almost) completely by an “effective” permittivity.
What precisely this “effective” approach really entails is still
a controversial issue(see, e.g., Refs.[6,22,31]). Recent very
detailed numerical calculations by Brosseau and Beroual[9]
for regular arrays, i.e., translationally invariant, of 2D and
3D inclusions embedded in a uniform matrix, indicate that
the spatial arrangement of the constituents in the mixture is
reflected in the manner in which local fields are established.
Despite the status of periodic systems as benchmark materi-
als for the study of composites, many aspects of the physics
of composites require better theoretical explanation and still
inspire a wealth of interesting ongoing research[28,29].

While these EMT have greatly advanced our understand-
ing of wave transport in heterogeneous materials at a funda-
mental level, their ability to make quantitative predictions is
still somewhat limited due to the lack of model microstruc-
tures that can accurately represent actual materials of inter-
est, i.e., impracticability of any approach based on knowing
the full topology of the system. A real composite system
must ultimately be described statistically through the speci-
fications of an infinite set of multipoint correlation functions
which characterize the microstructure of the two-phase me-
dium [6,24,32]. A comprehensive discussion of these micro-
structured correlation functions can be found in the books by
Torquato [24] and Milton [6], and we refer the reader to
these texts for further specifics. It has been argued that a
serious issue(regarding inverse transformation problems in
general) is that while the effective permittivity can be deter-
mined for a particular microgeometry, the reverse problem is
ill-conditioned in the sense that many different microstruc-
tures could produce the same permittivity data. Another ob-
jection to EMT is that they do not allow for the spatial cor-
relations between the inclusions, i.e., each component is
surrounded by the same effective medium[29]. Limitations
of the earlier dipolar approach have called for an extensive
renewal of the enabling theoretical and experimental meth-
odology towards modeling transport properties by taking into
account the multipolar character of the particle-particle inter-
actions[32]. The shortcomings of the above methods have
been dealt with to some extent through combined approaches
(see, e.g.,[33]) and improved strategies for estimating the
important parameters characterizing the electromagnetic
transport through disordered materials.
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C. Motivation and plan of the paper

In the current work, we introduce a finite-element method
(FEM) for calculating the effective permittivity of macro-
scopically inhomogeneous media. This paper is the first in-
stallment of that study and is exclusively dedicated to ge-
neric two-dimensional (2D) two-phase heterostructures
consisting of hard circular disk equilibrated distributions
[34]. Other papers in our study will focus on the study of the
permittivity behavior for 3D models and composites near
percolation threshold. The hard-disk distribution has been
chosen as the reference system since it is one of the simplest
idealized models to explain structural and kinetic properties
of matter[34–39], e.g., disk configurations in the plane have
been advanced as a simple model for the arrangements of
particles adsorbed on smooth surfaces[40,41]. Such systems
can be in thermal equilibrium or in one of the many nonequi-
librium states. While particles in equilibrium have thermal
motion such that they sample the configuration space uni-
formly, particles in nonequilibrium states usually do not
sample the configuration space uniformly, since they do not
diffuse after they have been placed into the system[24]. The
primary purpose of this paper is to present a practical algo-
rithm for calculating the effective permittivity« of a random
2D statistically isotropic composite in equilibrium consisting
of impenetrable circular disks of phase 2, with permittivity
«2 and surface fractionf2, randomly dispersed in a matrix of
another dielectric phase, say 1, with permittivity«1 and sur-
face fractionf1=1−f2. The 3D analog of this model would
be a composite consisting of parallel infinitely long and eq-
uisized cylinders with circular cross sections of phase 2 in-
serted in the phase 1, i.e., all interfaces are parallel to a fixed
direction. Such a composite has a transversally isotropic
symmetry and the dielectric properties can be described by
two parameters, one corresponding to the direction of fibers
and another one corresponding to the transverse direction.
While the value of effective permittivity in the direction of
fibers can be found exactly[29], i.e.,«L=«1f1+«2f2, finding
the transverse component is a more difficult task. A number
of earlier works[13,18,22] have considered a numerical ap-
proach to this problem. These early investigations focus on
modeling the effective conductivity of several systems in-
cluding the case of 2D regular arrays of perfectly conducting
disks. It would be beneficial to determineboth the structural
parameters and the dielectric characteristics within the same
numerical scheme. Given the importance of models of two-
phase materials, there is a need for systematic investigation
of how the randomness and connectedness influence the ef-
fective permittivity. The major purpose of this paper is to
contribute to the investigation of the structure property for
such systems by computer simulations. This kind of informa-
tion is required for identifying the mechanisms of polariza-
tion and conduction in real systems, e.g., thin films made by
sputtering by ion bombardment often have a columnar struc-
ture, similar to what we consider here. Here, we will con-
sider a two-step calculation process. On the one hand, we
generate the random medium using a MC method. Disk
packings are created by placing a number of particles within
a square cell with periodic boundary conditions. On the other
hand, we get the effective permittivity using a FEM-based

numerical method. In this paper, we show that our method is
generally applicable to various continuum systems and accu-
rately improves the estimate for the effective permittivity of
continuum media where local permittivity varies randomly
from point to point.

The remainder of this paper is structured as follows. Sec-
tion II outlines the basic computational framework and a
description of the simulation details in terms of which the
problem of calculating the “effective” permittivity of inho-
mogeneous two-phase materials can be approached. The ex-
plicit numerical results from our simulations of well-
equilibrated random distributions of equal-sized disks are
summarized in Sec. III. We consider a number of test cases
to demonstrate the utility of our method. Calculations per-
formed in this section permit us to test the validity of this
numerical scheme by comparison with upper and lower
bounds on the effective permittivity, and with results ob-
tained from conventional EMT. The paper is concluded in
Sec. IV with a summary of our results, of possible future
applications of the numerical approach developed here, and
of some open questions.

II. NUMERICAL IMPLEMENTATION

Over the past two decades, computer simulation has
proved itself to be a valuable tool, offering insights into the
relationship between the dielectric properties of multiphase
composites and their microstructure, an issue of central im-
portance in condensed-matter research due to the wide vari-
ety of heterostructures which exist in practice.

A. Two-phase microstructure

Two approaches have received wide recognition in the
theory of random heterogeneous material. In the first ap-
proach, the microgeometry may be chosen to follow as
closely as possible the phase arrangement of a given sample
of the material to be modeled, obtained, e.g., from transmis-
sion electron microscopy images. The resulting description is
called a “real structure” model[9,24,42]. The structure
analysis in such materials is complicated due to the presence
of the multitude of length scales, and because the experimen-
tal probes used have different, and often limited, space and
time resolution. In addition, there are certain problems with
the interpretation of the images[43]. Consequently, all this
(partial) information is insufficient for uniquely finding a
model for the microstructure. The second approach is based
on statistically based algorithms for reconstructing the mi-
crogeometry. This approach allows systems with both arbi-
trary shapes and arbitrary dielectric characteristics to be con-
sidered. In the current work, we shall use a probabilistic
model to represent such “numerical structure.”

The traditionalMETROPOLIS sampling[24,44] scheme is
adapted to generate equilibrated sets of realizations for the
statistically homogeneous and isotropic composite which is
studied. The basic parameters in this model simulation are
the lengthL of the square primitive cell side, the numberN
of hard disks, their diameterD, and their surface fractionf2.
The following is a brief explanation of the key steps of this
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algorithm. First, an initial configuration of particles in a unit
cell is generated. We used a random starting configuration
which enables us to attain more rapidly equilibrated sample
realizations. Depending on the value off2, different strate-
gies for random placing are used.

For small values off2, we use the random sequential
addition (RSA) process[45] because it is fast and easily
implemented on a computer. The procedure starts by posi-
tioning the desired number of particles randomly(using a
uniform distribution) and sequentially in the initially empty
square cell. If a particle can be placed into the square cell
without overlapping with other disks, then it remains fixed at
this position throughout the simulation. If the particle over-
laps another existing particle in the cell, then another attempt
is made until a nonoverlapping location can be found. As this
acception and rejection process continues, it becomes more
difficult to find available regions into which the disk can be
added, and in the saturation limit(for monodisperse circular
disks, f2

sat>0.55), no further addition is possible and the
process is over.

For f2.f2
sat, an alternative approach is used for generat-

ing the initial configuration which is based on the Clarke and
Wiley collective rearrangement method that was initially de-
veloped for generation of a random close packing of hard
spheres[46]. At the start, a required number of particles are
randomly placed inside a square cell according a uniform
distribution. In general, there will be steric overlaps among
the disks. To reduce these overlaps, the disks are then moved
one at a time along the vector sum of the overlaps. Moving a
disk along the vector sum of the overlaps may reduce or
eliminate some overlaps but will create or increase others. To
avoid increasing overlaps, a move is accepted if it does not
create any overlap larger than the maximum overlap among
all the disks. Thus, the maximum overlap always decreases
or remains constant. If the move is not accepted for a par-
ticular disk, the disk is moved again in the same direction by
a smaller amount. If this operation is not successful after a
few attempts, the disk is given a small random displacement.
Again the move is accepted or rejected depending on
whether the maximum overlap is less than or greater than the
maximum overlap among all the disks. Each disk in the
packing is moved sequentially in this way until there are no
more overlaps. Sometimes any disk may be locked into its
position, i.e., it cannot be moved without creating an overlap
equal to or less than the maximum overlap among all disks.
In this case, all disks are vibrated by giving to each disk a
small random displacement and the process is continued.

After an initial configuration is generated, MC cycles are
started in order to drive the system to equilibrium. At each
MC step, one attempts to move randomly the center-of-mass
coordinate of each disk. The new configuration is accepted if
the particle does not overlap with any other particles. If the
attempted move causes an overlap, the particle is not moved
and the new configuration is the same as the old one. The
maximum amplitude of the MC moves is adjusted to give an
approximately 50% acceptance ratio. This process is re-
peated until equilibrium is achieved, i.e., when the pair cor-
relation function does not change with time. In order to mini-
mize boundary effects due to the finite size of the system,
periodic boundary conditions are employed in the present

simulation. This means that the unit cell containing the par-
ticles is repeated periodically within the plane to form an
infinite lattice. With an infinite number of particles in the unit
cell, theMETROPOLISalgorithm produces statistically homo-
geneous and isotropic equilibrated ensembles of hard circular
disks.

For completeness, it is worth observing that other proce-
dures for generating random particle packings were de-
scribed in the literature[24,47–52], to which the reader is
referred for additional information.

B. Model of the effective permittivity and its basic equations

To investigate in some detail the dielectric properties of
heterostructures in the quasistatic limit, a method suitable for
determining the effective permittivity is needed. A detailed
description of the method can be found elsewhere[53],
though the relevant relations are included in this subsection.
An illustration is useful at this point.

Figure 1 shows that we consider a parallel plate capacitor,
with conducting plates of areaS and separation distanceh
which is filled with the composite medium to be studied. The
macroscopically inhomogeneous medium consists of two
types of isotropic dielectric materials, 1 and 2, with permit-
tivities «1 and «2, respectively. Here the permittivity« is a
relative quantity compared to the free space permittivity«0
=8.85310−12 F m−1. A constant potential differencew0 is
kept between the capacitor plates. Assuming thath is small
enough so that fringing effects can be ignored, then the ef-
fective permittivity « of the composite can be determined
from the energyW stored in the capacitor as

W=
1

2
«0«

S

h
w0

2, s2.1d

where «0=8.85310−12 F m−1 is the permittivity of the
vacuum. This definition ensures us that the energy stored in
the capacitor would be the same if the composite medium
was replaced by a homogeneous medium with permittivity«
subject to the same boundary conditions. The energyW can
also be expressed in terms of the spatial distribution of the
electrostatic potentialwsr d inside the capacitor if the micro-
scopic structure of the material is known. Since the compos-

FIG. 1. Illustration of the calculation of the effective permittiv-
ity of composite.
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ite considered here is locally isotropic, the energyW is

W=
1

2
«0E

V

«sr df=wsr dg2d2r , s2.2d

where«sr d is the local dielectric constant, where the integral
in Eq. (2.2) extends over the surfaceV of the capacitor.
Thus, determining the effective permittivity of the composite
medium requires knowledge of the distribution of the local
electrostatic potentialwsr d.

For that purpose, one can solve the following boundary-
value problem:

= · f«sr d = wsr dg = 0 s2.3d

in conjunction with the boundary conditionswbottom=0 at the
bottom plate andwtop=w0 at the top plate. Edge fringing
effects can be eliminated by the periodic extension of the
capacitor. For that purpose, we apply periodic boundary con-
ditions on the left and right boundaries of the unit cell. Pe-
riodic boundary conditions mean that the two boundaries
should be treated as identical. Two conditions are required:
(1) it must be possible to transform opposite faces into each
other by a simple translation, and(2) for each pair of faces
the phase distributions and the FE discretization must be
compatible. In addition, the potential and its derivatives are
supposed to be continuous along a line that approaches the
right boundary from inside the domain, jumps to the corre-
sponding location on the left boundary and from there con-
tinues into the domain. Stated in other words, it requires that
the cells together with boundary conditions prescribed on
them generate valid tilings both for the geometry and the
potentialw. To achieve this, the potential is constrained to
have equal values in corresponding points on the left and
right boundaries of the unit cell, i.e.,wleft=wright. It should be
noted that though our unit cell is periodic in two directions,
periodic boundary conditions can be applied just in one of
them and consequently the potential will be periodic in one
direction. We note also that for simple square and hexagonal
unit cells in which the faces of the cell coincide with sym-
metry planes of the phase arrangement, i.e., the unit cell
exhibits a plane of symmetry both for material properties and
geometry, periodic boundary conditions simplify to symme-
try boundary conditions expressed by the conditionn ·=w
=0 at the edge planes. On any interface between regions of 1
and 2 materials, the potential and the normal component of
the displacement vector are continuous, i.e.,w1=w2 on ]S
and «1n ·=w1=«2n ·=w2 on ]S, where the superscripts 1
and 2 label the two regions separated by the interface]S,
and the vectorn is normal to]S.

C. Representative surface element

With such numerical computation, the hard work comes
in addressing the issue of the representativeness of the finite
surface of the composite that is required for describing its
effective dielectric properties. A careful examination of this
problem is done in this subsection. It should be mentioned
that in the study of a periodic composite, the investigation
may be limited to an elementary cell of the periodic structure

without loss of information or generality. However, a random
composite cannot be characterized by a simple periodic cell,
and the study concerns a finite size of the system. Thus an
approximation should be introduced. The physical idea is
actually quite simple: it is based on the substitution of the
composite by its representative surface element(RSE). The
analysis is in fact performed on the RSE instead of the whole
composite sample. In practical terms, the candidate RSE
should be a surface of the composite material that is struc-
turally typical of the whole composite on average, small
enough from a macroscopical point of view, but sufficiently
large compared to the characteristic scales of the microstruc-
ture in order to contain a large number of single inhomoge-
neities(particles). In this sense, the RSE is statistically rep-
resentative of the microgeometry of the composite material.
But even with this definition, the size of the problem can be
too large from the numerical standpoint. To avoid this prob-
lem and to satisfy the aforementioned conditions, a cell of
“reasonable” size is constructed and periodicity of such cell
is assumed. Then, the ensemble-average(effective) permit-
tivity of the composite is found by averaging over many
realizations of the structure of the system, i.e.,«
=s1/Ldoi=1

L «i, whereL denotes the number of realizations
and«i is the effective permittivity of a particular realization.
In like fashion, the variance of the permittivity is given by
var«=s1/Ldoi=1

L s«i −«d2.
It has to be noted that in the case of an infinite number of

particles in the unit cell, theMETROPOLIS algorithm would
produce an isotropic material. Consequently, a single value
of the effective permittivity suffices to describe the dielectric
behavior. But here since we consider a finite number of par-
ticles, the unit cell is anisotropic. We have directed the coor-
dinate axes along the unit-cell continuation vectors, and for
each equilibrated realization, the values of effective permit-
tivity in the x and y directions, respectively, have been cal-
culated. We assume that the value of«i, in the above expres-
sion of «, is the average of these two values.

One additional issue that needs to be addressed concerns
the unit-cell construction scheme used in the current work,
which requires that particle-particle contact be avoided, i.e.,
there is always a minimum allowable separation distanced
between disks. Why is it thatd is so important? In many
experimental approaches to dispersion and self-assembly of
nanoscale colloids, surfactant in the form of oligomers or
polymers is added in order to improve dispersability or to
control the onset of self-assembly. Thus this geometric pa-
rameter,d, can play a role to describe encapsulation of the
inclusions. One natural explanation is that connections be-
tween particles form singular geometries and the automatic
mesh generator may produce very thin triangles when they
approach the sharp corners of the geometry(at the points of
contact), leading to poor element quality and as a result
yielding a large numerical error. On the other hand, when the
distances between particles are too small, it becomes impos-
sible to construct and mesh such RSE’s. It should perhaps be
emphasized in this context that even if RSE’s could be con-
structed and meshed, it would produce a very large number
of triangles. Consequently, a solution of the FEM system of
equations would be prohibitive in terms of computational
cost. To circumvent these complications, we consider the
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idealized problem obtained by this no-contact requirement
between inclusions. Thus, the particle contact artifacts
caused by discretization errors can be avoided. In general,
this constraint has the effect of producing an underestimate
of the effective permittivity, especially for high surface frac-
tions of inclusions. The physical reason comes from the fact
that particle contacts which form connected clusters leading
to significant potential-bridging store the large energy con-
centration and, in turn, strongly influence the effective per-
mittivity. Allowing a larger minimal distance between par-
ticles will give lower values of effective permittivity. The
point that needs to be kept in mind is the fact that there is no
universal optimum value for the parameterd. Different unit-
cell construction schemes lead to different optimum values,
even for the simple case of disks. These considerations indi-
cate that the value ofd has to be chosen carefully. It must
permit RSE’s to be constructed and the energy concentration
at the interface of particles to be simulated adequately with a
high degree of mesh discretization; simultaneously, the size
of the numerical problem should be in a diapason of our
computational power. Hence, for numerical efficiency, it is
extremely important to determine an appropriate RSE for
high permittivity contrast and high surface fraction that has
the optimal size and number of particles.

D. Further computational details

To summarize and to aid in the implementation, our self-
consistent procedure for the calculation of the effective prop-
erties of a random composite is as follows.

(1) Generate randomly distributed disk configurations
without overlap in a square box for a specified disk surface
fraction and permittivity of each component, using the stan-
dard METROPOLIS MC algorithm [34,44]. A periodic square
unit cell of constant sizeL=1 was taken in all calculations.
The number of disks in the unit cell varied from 16 forf2
=0.10 to 134 forf2=0.85 (Fig. 2). The dependence of the
permittivity on disk diameter is shown in Fig. 3(a). We ob-
serve a good convergence forf2,0.4. During all the runs,
the higherf2, the smallerD is required to achieve conver-
gence. We explored a number of uniform disk diameters be-
tween 0.089 and 0.357, and we found that convergence is not
obtained for large values off2. In Fig. 3(b), the variance of
the permittivity is plotted as a function off2 for different
values ofD. It should be stressed that the variance increases
asD is increased. In addition, we observe that the sensitivity
of the results toD is more pronounced at higher values off2
than at lower values. The physical reason is that contacts
between disks form connected clusters leading to significant
potential-bridging, which corresponds to high electrostatic
energy(hot spot) and greatly influences the value of«. How-
ever, this effect is counterbalanced by the influence of the
distanced between particles, i.e., increasing the number of
disks in the cell has the effect of increasing the number of
gaps and thus« decreases. We found by a trial-and-error
approach thatd=0.0005 was a good compromise: it allows
us to construct and mesh unit cells and simultaneously to
obtain systems of equations which are in diapason of our
computational power. In the calculations discussed below,

and unless otherwise stated, the disk diameter was main-
tained constant atD=0.09. We were able to model dense
monodisperse circular disk configurations with a particle sur-
face fraction up tof2

max>0.85. It is worthy of note that this
value agrees well with the estimates of the RCP of hard disks
which have been published in the literature[35,50,54–59].
The ensemble average was done over 100 realizations. The
number of MC stepsNMC needed to achieve equilibrium de-
pends onf2 and will be discussed in Sec. III. The generation
of the random numbers was done by an internalMATLAB
function which uses a lagged Fibonacci random numbers
generator, with a cache of 32 floating point numbers, com-
bined with a shift register random integer generator[60,61].

(2) Carry out the calculation of the effective permittivity
using the FEM software packageFEMLAB [62] with the aid
of MATLAB environment [60]. FEMLAB has an automatic
mesh generator which uses a Delaunay algorithm and has
many parameters for controlling the size and the density of
the element in the mesh. Quadratic triangular elements were
used for discretization of the unit cell. It should be noted that
the meshing of our model domain takes into account the
border between the matrix and disks, i.e., the mesh is auto-
matically adjusted to conform with substantial changes of the
material parameters. The number of nodes used in the calcu-
lations depends on the surface fraction of disks, e.g., it is
about 5000 for small surface fraction to about 100 000 for
the highest surface fractions. The effective permittivities in
the x and y directions are found for each realization by ap-
plying a unit potential,w0=1 V, in the corresponding direc-
tions with the same boundary conditions.

FIG. 2. Typical equilibrium configurations(sample realizations)
of the two-phase composite consisting of monodisperse circular
disks randomly distributed within a square primitive cell. The
sample packing results from the sequential algorithm described in
the text applied to a binary mixture with a given surface fraction of
disks. (a) f2=0.1, (b) f2=0.3, (c) f2=0.5, (d) f2=0.6, (e) f2

=0.7, (f) f2=0.8, (g) f2=0.82,(h) f2=0.83, and(i) f2=0.85.
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(3) Average the effective permittivity of the composite
structure over all sample realizations. All calculations were
carried out on a 2.4 GHz Intel Pentium 4 system running
Windows.

III. RESULTS AND DISCUSSION

To illustrate how the numerical scheme described above
works in practice, we performed repeated calculations for
various surface fractions and permittivity ratios. Here we
show the results for structural aspects in terms of the radial
distribution function and the mean coordination number, i.e.,
the number of inclusions in contact with a considered inclu-
sion. In order to test the code and validate the method, we
calculated the effective permittivity of binary mixtures of
hard disks and compared the numerical results with those
obtained from conventional EMT and predictions from
bounds.

A. Radial distribution function g 2„r …

There are many statistical descriptors of a random hetero-
geneous material defined by an ensemble of many-particle
systems. For statistically homogeneous media, the most basic
statistical descriptor which provides structural information
about the equilibrium system is the radial distribution func-
tion (RDF). It should be recalled that whereas the properties
of a hard-rodsd=1d system are known exactly[63], not a
single exact result is known whendÞ1. Consequently, one
resorts to some approximate integral equation for the struc-

tural correlation functions, e.g., the Percus-Yevick(PY)
equation. The RDF for hard disks has been largely studied in
the literature[24,64], but unfortunately the PY equation can-
not be solved analytically ford=2.

The RDF is usually referred to as the pair correlation
function, which describes how, on average, the particles in a
system are radially packed around each other. It is defined as
the probability of finding one disk center at a given distance
r from the center of a reference disk. Within the computer
simulation, it can be obtained by generating a histogram in
the following manner[24]. The surface around each disk is
divided into concentric shells of finite thicknessDr, and the
number of disks in each shellnsrd at radial distancer is
counted and divided by the shell surfaceyshellsrd to obtain the
local density. The radial distancer is assumed to be midway
between the inner radiusr −Dr /2 and outer radiusr +Dr /2
of the shell. To obtaing2srd, the densities at each distance are
then averaged over all particles and normalized to the num-
ber density of particles, i.e.,r. The statistically isotropic me-
dium considered here implies that ther dependence of the
RDF is given by

g2srd =
nsrd

Nryshell
. s3.1d

To obtain a reliable statistics,g2srd is calculated by taking an
average over many generated configurations. In this work,
Dr was set to 0.1D.

Figures 4(a)–4(d) display the influences of the reduced
radial distance and number of MC steps on the RDF when
the surface fraction of disks is held fixed. How well are the
resulting configurations equilibrated? The quality of the
equilibration can be judged from the evolution of the RDF’s
as NMC is varied. The number of MC steps required to
achieve equilibrium increases asf2 increases from typically
10 for f2=0.3 to 3000 forf2=0.7 to 10 000 and more for
f2ù0.8. This panel of figures exhibits two remarkable fea-
tures of the RDF’s. First, the first peak is the highest in the
RDF’s for all surface fractions. The “periodicity” of the
peaks is governed by the diameter of disks. Additionally, it
can be noticed that asf2 increases, spatial correlations build
up and lead to nontrivial structure ing2srd: the first peak is
slightly displaced to smaller distance. Second, as the RCP
surface fraction for equilibrated distributions is approached,
larger fluctuations in the peaks of the RDF appear. This af-
fects qualitatively the shape of the RDF profile that now
exhibits oscillatory behavior.

We have also looked at the RDF of the random configu-
rations of disks that we generate for our simulations and
compared them to the distribution function of a mixture of
hard disks, as predicted from solution of the PY integral
equation. Figures 5(a)–5(d) depict the observed and pre-
dictedg2srd. What is interesting is that the results are prac-
tically indistinguishable forf2,0.69 over the whole range
of r /D, but the most glaring difference between PY theory
and simulation arises forf2.0.7. For such a case, the PY
theory does not accurately capture the positions of the peaks
in the RDF, in agreement with the fact thatf2=0.7 is slightly
higher than the surface fraction at which an ordering transi-

FIG. 3. (a) The dependence of the effective permittivity as a
function of f2 for random configurations of disks with«1=1 and
«2=1000. Dash-dot-dotted, dash-dotted, dotted, dashed, and solid
curves correspond toD=0.357,D=0.252,D=0.178,D=0.126, and
D=0.089, respectively. (b) Same as in(a) for the variance of the
effective permittivity.
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tion is expected to appear[22]; f2.0.7 correspond to meta-
stable disordered, i.e., glassy, states for which the RCP frac-
tion has been found to be<0.82 [35].

The last point we want to focus on in this discussion
concerns the long-ranged behavior of the correlations in the
critical region near the RCP fraction. Tobochnik and Chapin
[65] and Song and co-workers[66] have argued thatg2sr
=Dd diverges forf2 nearf2c according to a power law, i.e.,
g2sDd,sf2c−f2d−s with s=1 for d=2 and 3. In Fig. 6, we
show our prediction of theg2srd data for r /D=1 versus
f2c−f2 in a semilogarithm plot. The data do fall reasonably

on a line over the limited range of data used. Our prediction
of s=1.010±0.016 is very close to unity in the limit that
f2→f2c. Heref2c=0.862.

B. Mean coordination number

The resulting packing structures are also analyzed in
terms of mean coordination numberZ. Mean coordination
number is defined as the average number of disks in contact
with a considered disk. It should be noted thatZ is very
sensitive to the definition of “contact” or critical distance,
i.e., the minimal distance between two disks before they are
regarded to be in contact. In 2D, we have the following ob-
vious steric constraint:Zø6.

Because the constraint of a minimum allowable separa-
tion distance between disks is an artifact, we also looked at
the effect of this parameter onZ. In Fig. 7, the computed

FIG. 4. The dependence of the radial distribution functiong2srd
hard disks as a function of the dimensionless radial distancer /D for
different surface fractions of disks.D=0.045. The filled squares are
simulation data for a nonequilibrium system, the solid curves are
evolution of systems at various stages of the equilibration proce-
dure, i.e., for different values ofNMC ranging from a few tens to a
few 104, and the filled circles are simulation data for the hard disks
system in equilibrium. The arrow indicates the evolution of the
profiles of g2srd as NMC steps are increased.(a) f2=0.3, (b) f2

=0.5, (c) f2=0.7, and(d) f2=0.83.

FIG. 5. The dependence of the radial distribution functiong2srd
hard disks as a function of the dimensionless radial distancer /D for
different surface fractions of disks. For comparison, the solid curve
shows the corresponding values of the RDF calculated within the
Percus-Yevick approximation.(a) f2=0.3, (b) f2=0.5, (c) f2

=0.65, and(d) f2=0.7.
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values ofZ of the hard-disk system are shown as a function
of the surface fraction of disks andd. Expectedly, the mean
coordination number increases monotonically as a function
of f2. Upon an increase of the parameterd, the effective
permittivity increases. In all cases(not shown), we observed
a similar trend as displayed in Fig. 7. We mention that our
results forZ are in close agreement with those obtained in
previous simulation studies[22,31]. The increase inZ has the
effect of enhancing the polarization of the inclusions.

C. Effect of phase interchange and duality relations

The previous subsections described procedures that con-
stitute the structural stage of these simulations. The present,
and following, subsections discuss how equilibrated arrange-
ments of disks affect the effective permittivity.

Keller [67], and Dykhne[68] showed more than three
decades ago that continuum composites with a 2D microge-
ometry have a specific symmetry, namely the duality. The
generalization of these duality relations, e.g., to the case of
general anisotropic permittivity tensors, has been given by a
number of authors including Mendelson[69], Balagurov
[70], Milton [71], Durand [72], and Schulgasser[73]. It is
worth noting that the duality(or phase exchange) relation
was first derived in terms of conductivity[2,33], but for rea-

sons of consistency, we treat it, in the present work, in terms
of permittivity. It can be applied to any 2D two-phase com-
posite as long as thex andy axes are the principal axes of the
effective permittivity tensor, i.e., regardless of the phase ge-
ometry. It states that the effective permittivity determined in
the x direction for a medium in which the inclusions(the
matrix) have permittivity«1 s«2d, «xs«1,«2d, is related to the
effective permittivity of the phase-interchanged composite in
they direction,«ys«2,«1d, independently of the specific struc-
ture by the following equation:

«xs«1,«2d«ys«2,«1d = «1«2. s3.2d

Before checking Eq.(3.2) with our results, we first note
that a problem arises due to the fact that we have calculated
effective permittivity«x s«yd in directionx syd with periodic
boundary conditions applied just along axisy sxd. It means
that actually we have calculated effective permittivity«x s«yd
of a thin layer of the composite system in directiony sxd, and
consequently, Eq.(3.2) cannot be used directly for compari-
son with our results. Note that the calculated effective per-
mittivity incorporates information about 2D periodicity be-
cause it is averaged over«x and «y. For our purpose, we
carried out calculations of the ensemble-average permittivity
of the same system but when symmetry boundary conditions
are applied to the lateral side of the periodic cell, i.e., we
restrict our calculation to a unit cell without taking into ac-
count periodicity. Thus we fulfill requirements of Eq.(3.2).

Comparison of the FEM results with those obtained from
Eq. (3.2) is displayed in Fig. 8 for cases when periodic and
symmetry boundary conditions are applied. As can be seen
from Fig. 8, our results with symmetry boundary conditions
are in excellent agreement with relation(3.2). Another obser-
vation is that« corresponding to cells with applied periodic
boundary conditions is higher than the corresponding value
of « for cells with applied symmetry boundary conditions
because in this case the FEM scheme takes into account the
interaction between particles of neighbor cells while symme-
try boundary conditions do not “see” these particles.

FIG. 6. Scaling plot of the RDF as a function off2
max−f2. Here

r /D=1.

FIG. 7. The dependence of the mean coordination numberZ vs
surface fraction of disks at varying the minimum separation dis-
tanced allowed between disks from 0.001 to 0.01 with step equal to
0.001.

FIG. 8. Comparison of our FEM data for« with those obtained
from Eq.(3.2). Solid squares(circles) correspond to FEM data with
applied periodic(symmetry) boundary conditions.(a) «1=1, «2

=10, (b) «1=1, «2=100, and(c) «1=1, «2=1000.
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As an aside to these calculations, Figs. 9(a) and 9(b) show
the electrostatic potential and energy for two types of mix-
tures: (a) when the inclusion permittivity is lower than the
matrix permittivity «2/«1!1, and (b) an inverted mixture
where the inclusion permittivity is higher than the matrix
permittivity «2/«1@1. These graphs, which provide informa-
tion on the variation of the local electric field, reveal the
presence of regions of high field intensity inside the compos-
ite. The energy in such systems flows along trajectories
(chainlike structures), avoiding low-permittivity regions in
favor of regions where the permittivity is high.

D. Upper and lower bounds on the effective permittivity

As was recalled in the Introduction, the determination of
the effective permittivity necessitates knowing an infinite set
of correlation functions which statistically characterize the
microstructure of the two-phase medium. However, in prac-
tice such a complete statistical characterization of the me-
dium is almost never known. Given limited microstructural
information on the composite, a number of upper and lower
bounds on the effective permittivity(conductivity) have been
derived using variational principles[6,24,29,74–76]. For ex-
ample, optimal second-order bounds, i.e., Eq.(A2), which
apply to any composite material with two isotropic compo-
nents, were established by Hashin and Shtrikman in 1962
[74]. Over the years, progressively tighter bounds have
emerged, e.g., Eqs.(A3) and (A4). In this area, we note the
work of Silnutzer [77] and Milton [71] for any isotropic
two-phase material. The Silnutzer bounds depend upon an
integral z2 which involves the three-point probability func-
tion S3, whereSnsr 1,… ,r nd denotes the probability of find-
ing n points at vector positionsr 1,… ,r n all in one of the two
phases, say phase 2. Milton’s bounds depend also onz2, but
on the four-point probability function S4. It is noteworthy

that the three-point parameterz2 has been computed for
random-media models, including the random distribution of
hard (impenetrable) disks in a matrix, by several investiga-
tors [24,78].

In the present paper, we used the values of the microstruc-
tural parameterz2 which were obtained from the approxi-
mate relationz2=f2/3−0.05707f2

2+Osf2
3d [22]. To test the

results, we now consider some specific examples. For a wide
range of the permittivity ratio«1/«2!1, Figs. 10(a)–10(c)
display a comparison of upper and lower bounds on the ef-
fective permittivity and the calculated data in the present
work. Figure 10 indicates that the fourth-order bounds are
narrower than the third-order bounds which significantly im-
prove upon first-order and second-order bounds. Figure 10
also shows that the fourth-order lower bound provides an
excellent estimate of the effective permittivity for a wide
range of surface fractions up tof2>0.7, in agreement with
the fact that the bounds become progressively narrower as

FIG. 9. Schematic of the FEM-calculated electrostatic potential
(top) and energy(bottom) in the unit cell with surface fraction of
hard disks f2=0.5. (a) «1=1000, «2=1; (b) «1=1,
«2=1000. The bars on the right give the values of the potential
and the energy corresponding to the graytones.

FIG. 10. The dependence of the bounds on« as a function of the
surface fractionf2 of disks for «2/«1.1. Dashed, dash-dotted,
dotted, and solid curves correspond to the one-point, two-point,
three-point, and four-point bounds, respectively, and the solid
circles are obtained by FEM. Upper bounds are not shown in(b)
and(c). For comparison, values of« obtained from the Bruggeman
equation are also represented by open circles.
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more microstructural information is incorporated[24,79].
Fig. 11 is analogous to Fig. 11 but for«1/«2@1. In Fig.

11, the same trend can be observed in the comparison of
bounds with the numerical data, i.e., the fourth-order upper
bound provides a good estimate of the calculated data. How-
ever, it is quite remarkable that the upper second-order, third-
order, and fourth-order bounds are very close to each other,
the accuracy of the bound increasing as the order increases.

E. Comparison with exact results concerning
regular arrays

Following the check on bounds of«, we present illustra-
tive results from simulations for regular arrays, i.e., cases for
which an exact solution can be derived. Note that this geom-
etry renders the two-component composite materials transla-
tionally and rotationally invariant. As a standard of compari-
son, we present in Fig. 12 plots of the scaled permittivity
« /«1 for regular arrays of 2D identical circular disks embed-
ded in a uniform matrix, as a function of the disks surface
fraction f2 at values of the permittivity ratio«2/«1=10, 50,
and`, respectively. We observe that the results from the two

methods, FEM and analytical[80], compare almost exactly
with each other, validating the accuracy of the FEM method.

F. Comparative assessment of the FEM approach with
equations for predicting the effective permittivity

of heterogeneous media

In this subsection, the performance of the FEM approach
is compared to that of four common equations for predicting
the effective permittivity of inhomogeneous media. It is
worth observing that the role of analytical models is different
from, and complementary to, that of detailed numerical
simulations. Simulations are virtual experiments. However,
they are limited, even with the fastest computers, to explor-
ing relatively short time and length scales. Analytical models
are typically simpler and more approximate, but they can
give direct insights into how materials properties arise from
microscopic interactions. Moreover, analytical models can
often treat a broad range of conditions, reveal trends, suggest
functional relations for engineering applications, and moti-
vate experiments. A number of analytical equations to calcu-
late the effective permittivity for a wide variety of
condensed-matter systems have been reported; see Refs.
[81,82], and references cited therein. For physical problems
in particular, there has been a long history of mixing laws for
composite materials, provided the constituent material
phases do not chemically react with each other. However,
this set of approximations is primarily viewed as an ansatz: a
set of practical, useful, yet somewhat heuristic prescriptions
for estimating dielectric properties of heterostructures. Al-
though an empirical description has limited transferability,

FIG. 11. Same as in Fig. 10 for«2/«1,1.

FIG. 12. Comparison of the FEM simulation data(filled sym-
bols) for the normalized effective permittivity« /«1 of 2D arrays of
a disk with the prediction from exact models[31,80]. The three
curves correspond, respectively, to«2/«1=10, 50, and`. (a)
Square array,(b) hexagonal array.
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and its ability to give quantitative results should always be
carefully scrutinized, such an approach can be quite useful in
exploratory studies. The underlying physics of nearly all
EMT models revolve around one or a combination of two
principal elements:(1) because of the difficulties in dealing
with multiple length scales, a practical approach to study
such systems is coarse-graining, i.e., reducing problem to an
effective one-component system of particles interacting
through the effective potential, and(2) the free-space wave-
length of the field is assumed to be much larger than the
scale of inhomogeneities in the composite. We have already
used this approach to fit the microwave dielectric response of
carbon black-filled polymers over a wide range of carbon
black concentrations[83]. This approach is more subjective
than one would hope for and has led to much discussion in
the literature[17,33,83]. Given the above complexities, it is
clear that there is strong motivation to move beyond reduced
mean-field approaches and to attempt a statistical treatment
of the system.

Keeping the same notation as above,«, «1, and«2 denote,
respectively, the effective permittivity of the composite ma-
terial, the permittivity of the matrix with surface fractionf1,
and the permittivity of the inclusion phase with a surface
fraction f2. The most popular mixing laws and EMT are
those of Maxwell-Garnett,

« = «1
«1f1s1 − Ad + «2sf2 + Af1d

«1 + Af1s«2 − «1d
, s3.3d

Böttcher(also termed symmetric Bruggeman),

« = «1 + s«2 − «1df2
«

« + s«2 − «dA
, s3.4d

Bruggeman(asymmetric),

« − «2

«1 − «2
S«1

«
DA

= f1, s3.5d

and Looyenga,

«1−2A = f1«1
1−2A + f2«2

1−2A, s3.6d

where As0øAø1d is the depolarization factor which de-
pends on the shape of the inclusions. For disksA= 1

2.
In order for the assessment to be reliable, calculations of

the effective permittivity should be performed with different
permittivity ratios«2/«1. Figures 13 and 14 display the nu-
merical data of the current work superposed with the predic-
tions of Eqs.(3.3)–(3.6). Based on the results shown in Figs.
13 and 14, we see that forf2 below 0.4, our data approach
the theoretical models as expected, i.e., the dilute limit[22].
As seen in these figures, Bruggeman’s asymmetrical model is
superior to the other models in the prediction of«, particu-
larly for f2 above 0.4. In all cases, the Bottcher and Looy-
enga equations have been shown to have poor predictive
ability for hard disk distributions at high surface fraction and
both for very large, i.e., Figs. 13(a)–13(c), and very small,
i.e., Figs. 14(a)–14(c), permittivity ratios. This is of funda-
mental importance because higher multipole interactions be-
come important when the inclusions approach contact. EMT
as previously formulated certainly break down at high vol-

ume fractions of inclusions since they are based on a dipolar
analysis, and do not take into account the multipole interac-
tions contributing to the polarization of the material medium.
The same higher multipole interactions that produce the per-
mittivity increase(Fig. 13) or decrease(Fig. 14) also enforce
disk clustering. This confines and localizes higher multipole
effects to the close-packed clustered regions.

Figures 13 and 14 show also for comparison the values of
« calculated for a given nonequilibrium distribution of hard
disks, i.e., distribution which is not equilibrated by MC runs.
Here, it should be recalled that forf2øf2

sat, we used the
RSA process for the random distribution of disks, whereas
Clarke and Wiley’s algorithm was used for higher surface
fractions. Three comments are in order. First, we observe that
the values of« calculated with the RSA process and those
corresponding to equilibrium distributions are identical for
surface fractionsf2ø0.5. This is quite surprising since one
would expect that exclusion surface effects imply very dif-
ferent results between the RSA-obtained and equilibrium dis-

FIG. 13. Comparison of the FEM simulation data(filled circles)
for « of random distributions of disks with«2/«1.1. Open squares,
circles, triangles, and stars represent Maxwell Garnett, Bruggeman,
Böttcher, and Looyenga formulas, respectively. For comparison, the
filled squares denote the corresponding value of the permittivity for
a nonequilibrium configuration.
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tributions. For higher surface fractions, the values of« for
the nonequilibrium distribution are larger than the equilib-
rium one, and the difference between these values increases
monotonically as the surface fraction is increased. This may
be due to the following fact: at equilibrium, the disks are
uniformly distributed in a surface, whereas in the nonequi-
librium distribution clusters of disks can be formed leading
to larger values of«. From a practical point of view, we must
be aware that the calculated values of« for nonequilibrium
distributions forf2.f2

sat are very sensitive to the algorithm
which is used for generating the initial configuration. Figures
13 and 14 show also that, as the surface fraction of disks
approaches the close packing fraction, the difference be-
tween equilibrium and nonequilibrium values of« tends to
decrease because of the large entropy decrease of the system.
Second, and in like fashion as the equilibrium situation, the
values of« calculated for the nonequilibrium distribution are
between those obtained from the Maxwell-Garnett and
Bruggeman formulas. Third, we also verified(not displayed
in the figures) that the nonequilibrium values of« are within
the fourth-order bounds calculated for the equilibrium distri-
bution, in agreement with the facts that the RSA-obtained
and the equilibrium distributions are identical at the level of
the third virial coefficient, and that the value of the three-
point microstructure parameterz2 which is used for the cal-

culations of bounds for the equilibrium distribution is also
exact for the RSA distribution[79].

Results from the Bruggeman equation are also shown in
Figs. 10 and 11 for comparison. The deviations between
Bruggeman values and those obtained from upper and lower
bounds increase for very large and very small permittivity
ratios. It is noted that the results reported here are in good
agreement with the results of Kärkkäinen and co-workers
[84], who found effective permittivity data of a 2D mixture
calculated by the FDTD method in between the predictions
of the Maxwell-Garnett and Bruggeman equations. These in-
sights may help to explain the polarization mechanisms
which characterize the dispersion behavior in heterostruc-
tures with broken-translational symmetry.

IV. CONCLUDING SECTION

We are now ready to summarize the results of the preced-
ing section and conclude with some comments concerning
several open questions.

A. Summary

We have made two contributions with this paper. The first
one is general in nature, and consists in a versatile FEM
simulation approach, in the context of 2D applications, for
quantifying simultaneously structural descriptors such as the
mean coordination number and RDF, and the effective per-
mittivity, regardless of which mechanism causes internal dis-
order. An understanding of the morphology is a prerequisite
to being able to tune the dielectric behavior of composite
structures. A reliable algorithm of easy implementation and
wide applicability was presented that(1) prepares equili-
brated configurations of disks in a background matrix, and
(2) solves the equations of continuum electrostatics for sys-
tems of heterogeneous permittivity in random sample real-
izations. From our previous experience, it is important to
note that a critical aspect for the success of any sequential
method concerns the manner in which the packing construc-
tion is done. We should not leave this part of our presentation
without reminding the reader that our method introduces a
geometric parameterd which defines a minimum separation
distance between the inclusions. The results do not answer
the question of what is the optimal value ford, and it should
be evaluated on case-by-case basis. This study focused some
of the practical issues confronted when performing FEM and
MC simulations, e.g., the number of MC steps needed to
achieve equilibrium.

The second contribution from the current work is specific,
and consists of a set of information from FEM simulations
for random mixtures of two constituents with different per-
mittivities. We have demonstrated the efficiency of our
method by applying it to a number of test cases. Collectively,
all of the above simulation results assess the accuracy of the
calculated values of the permittivity for 2D lossless systems
and agree fairly well with the results already available in the
literature. Our calculations confirm the general rules that the
bounds become progressively narrower as more microstruc-
tural information is incorporated, but the methodology that

FIG. 14. Same as in Fig. 13 for«2/«1,1.
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we present is also useful for examining those cases for which
the general rules do not apply. Such a comparison is critical
in order to ascertain the numerical scheme accuracy, the
range of applicable inclusion surface fractions, and to guide
future improvements. As far as we know, there are no avail-
able experimental data with which to compare the predicted
dielectric behavior of these heterostructures. Our hope is that
this computer simulation will serve as a test case for those
investigators who work in the subject of electromagnetic
properties of random heterogeneous materials.

B. Outlook

What is the future outlook? There are several nontrivial
extensions of the current work that would be interesting and
which deserve future consideration. We have restricted our-
selves to discussing the 2D nondissipative case, i.e., rigid
disks in the plane and« is real, but the real-space approach
we have described is more general, and is generalizable be-
yond the simple model proposed here to more realistic 3D
lossy media. This will provide the opportunity to identify
similarities and contrasts with the 2D case. The method lends
itself to the study of more general systems. For example, we
note that we have assumed equal radii for the disks. An issue
which is of interest in random disk packing studies is to
include in the simulations species with different diameters,
i.e., polydispersity with two or three different diameters or
with a continuous spread of disk diameters. Another direc-
tion would be to consider a more elaborate particle shape,
e.g., ellipse, for which the local orientational order will
doubtless affect the permittivity of random packings. Be-
cause of the above-presented mathematical analogy, the
present results are also relevant to the determination of other
relevant macroscopic(effective) quantities such as the effec-
tive thermal conductivity and magnetic permeability of ran-
dom multiphase systems[4,9].

ACKNOWLEDGMENTS

The financial support of the Conseil Général du Finistère
to V.M. is gratefully acknowledged. The authors are also
grateful to Professor Fred Lado from the Physics Depart-
ment, at North Carolina State University, Raleigh, for help
with the calculation of the RDF from the PY equation. The

Laboratoire d’Électronique et Systèmes de Télécommunica-
tions is Unité Mixte de Recherche CNRS 6165.

APPENDIX

This appendix is meant to summarizea priori estimates of
upper, i.e.,«U

sid, and lower, i.e.,«L
sid, bounds for« which have

been used for comparison with the FEM results. As noted in
the Introduction, for such descriptions, a number of authors
have developed various approaches delivering different lev-
els of sophistication and predictive power. These estimates
narrow the composition range of possible effective permit-
tivity. Detailed treatments can be found in the references.

The loosest and simplest bounds are the so-called Wiener
one-point bounds[85],

«L
s1d = s«1

−1f1 + «2
−1f2d−1,

«U
s1d = «1f1 + «2f2. sA1d

Hashin-Shtrikman two-point bounds[74] for any
d-dimensional two-phase isotropic mixture in which«2ù«1
are

«L
s2d = «1f1 + «2f2 −

f1f2s«2 − «1d2

«1f2 + «2f1 + sd − 1d«1
,

«U
s2d = «1f1 + «2f2 −

f1f2s«2 − «1d2

«1f2 + «2f1 + sd − 1d«2
. sA2d

The three-point bounds on effective permittivity[75,77]
of anyd-dimensional two-phase isotropic heterogeneous me-
dia are

«L
s3d = «1f1 + «2f2 −

f1f2s«2 − «1d2

«1f2 + «2f1 + sd − 1ds«1
−1f1 + «2

−1f2d−1 ,

«U
s3d = «1f1 + «2f2 −

f1f2s«2 − «1d2

«1f2 + «2f1 + sd − 1ds«1z1 + «2z2d
,

sA3d

wherez1+z2=1.
Milton [6,71] derived four-point bounds on the effective

permittivity isotropic two-phase composite for which«2
ù«1,

«L
s4d

«1
=

1 + fsd − 1df2 − g2/z2gb21 + s1 − ddff1z2 + f2g2/z2gb21
2

1 − ff2 + g2/z2gb21 + ff1s1 − ddz2 + f2g2/z2gb21
2 ,

«U
s4d

«2
=

1 + fsd − 1df1 − g1/z1gb12 + s1 − ddff2z1 + f1g1/z1gb12
2

1 − ff1 + g1/z1gb12 + ff2s1 − ddz1 + f1g1/z1gb12
2 , sA4d

where g1−g2=sd−2dsz2−z1d and bi j =s«i −« jd / f«i +sd−1d« jg, i Þ j . These four-point bounds depend uponfi, zi, and the
four-point parametersgi. It is interesting to note that, making use of the phase interchange theorem, Milton showed thatgi can
be expressed in terms off2 andz2.
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