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The challenge of designing new solid-state materials from calculations performed with the help of computers
applied to models of spatial randomness has attracted an increasing amount of interest in recent years. In
particular, dispersions of particles in a host matrix are scientifically and technologically important for a variety
of reasons. Herein, we report our development of an efficient computer code to calculate the dfbeditive
permittivity of two-phase disordered composite media consisting of hard circular disks made of a lossless
dielectric(permittivity ¢,) randomly placed in a plane made of a lossless homogeneous die{petmiaittivity
gq) at different surface fractions. Specifically, the method is basediypa finite-element description of
composites in which both the host and the randomly distributed inclusions are isotropic phasgés), amd
ordinary Monte Carlo sampling. Periodic boundary conditions are employed throughout the simulation and
various numbers of disks have been considered in the calculations. From this systematic study, we show how
the number of Monte Carlo steps needed to achieve equilibrated distributions of disks increases monotonically
with the surface fraction. Furthermore, a detailed study is made of the dependence of the results on a minimum
separation distance between disks. Numerical examples are presented to connect the macroscopic property
such as the effective permittivity to microstructural characteristics such as the mean coordination number and
radial distribution function. In addition, several approximate effective medium theories, exact bounds, exact
results for two-dimensional regular arrays, and the exact dilute limit are used to test and validate the finite-
element algorithm. Numerical results indicate that the fourth-order bounds provide an excellent estimate of the
effective permittivity for a wide range of surface fractions, in accordance with the fact that the bounds become
progressively narrower as more microstructural information is incorporated. Future directions of the active
field of computational studies of the structure-property relations for composite systems are briefly discussed.
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I. INTRODUCTION AND MOTIVATION answering many practically important issues of condensed-
matter physics and materials science. However, many models
for determining the effective permittivity discussed in the
From biology to geology to electronics, a number of ma-|iterature are heuristic in nature, applying only to a specific
terials involve composites. Although some of these materialgombination of particles-host medium. This is not to say that
are found in nature, laboratory processing is often needed fQe have not learned an enormous amount about the dielectric
efficient use. Others are entirely SynthetiC, created by Chembroperties of condensed-matter SystemS, both from experi_
cal and physical processes. Certain materials are multiphasgental and theoretical studies. Considerable controversy sur-
composites designed for certain desirable response propertigsunds the problem of determining the effective transport
otherwise unavailable. With regard to linear macroscopiGroperties in composite materials. One important, and as yet
electromagnetic response of these materials, the inconsigpt completely answered, question in this area concerns the
tency between theory and experiment emphasizes the promipserved similarities of the permittivity vs volume fraction
nence of some kind of phenomenology in this prob[dr3].  of inclusion variation among various types of stochastic het-
It might be noted that within a continuum approach, the issu@rogeneous systems. Each individual system is of course
of electromagnetic properties is analogous to the thermal qlinique unto itself but, consistent with this diversity, there are
elastic properties of heterogeneous solids, the permeabilityyerall similarities which one would like to explain. On the
of porous media, and the rheology of hydrodynamic suspenexperimental side, results are being consolidated, mainly due
sions. In recent years, a great deal of effort has been directgg 5 considerable improvement in the quality of the samples
towards a fundamental understanding of the effective transcompared to those used in the early studies of composite
port properties of composites that relate average flux fields tghaterials.
average gradient fieldgi—€]. Taking into account a great  Many theorists have examined this subject by performing
diversity of physical processes, these studies are capable gh initio calculations, e.g., density-functional theqiyFT)
[7], the finite-element method-EM) [8], the different vari-
ants of the boundary integral equati@iE) [9-11], the first-
*Corresponding author. Also at the Département de Physiqueprinciples molecular dynamid4.2], the finite integration al-
Université de Bretagne Occidentale, 29238 Brest Cedex 3, Francgorithm [13], the Monte Carlo (MC) algorithm [14],
FAX: 33-2-98 01 61 31. Email address: brosseau@univ-brest.fr multipole momentg15,164, the genetic algorithnil7], the

A. Overview
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finite-difference-time-domaiiFDTD) method[18], and the tions are an issue at the core of contemporary condensed-
fast Fourier transforniFFT) method[19-21], on a variety of  matter research. Physicists have been engaged in this area at
systems where only two phases are present. Related to theast since Maxwel[26] (in particular, his method for calcu-
problem at hand, the notions of random close packi®@gP  lating the conductivity of a simple-cubic lattice of spherical
and maximally random jamming have been discussed bjnclusions, but it was not until the 1930s, primarily under
Torquato and co-worker@2—24. The main problem is that the influence of Bruggeman's pioneering wofR7], that

real calculations are not easy, and the challenge is to find #ere was a systematic attempt to establish the foundations of
reasonable balance between the choice of method, desirdde Self-consistent effective-medium approach and bring it

accuracy, and computational expense. The most desirable & f:th the phé/_sicalhmai.nstrl\e;ﬁ_m. ,?js alreacljy goipfted_ out,
proach for fully harnessing the dielectric properties of het- ective-medium theoriedEMT) and generalized effective-

erostructures at the macroscale must be inherently muItisca@eo:gj)i?mt:t?gr:g;g_g'\élgr:sbgg\ll:é t(())trrlgr r?se:r?t-?ﬁéd-“rlf)ess
(both in time and spagesince its evolution is mediated by a PP ’ P 9

S i . ; features of the electromagnetic behavior of heterostructures.
combination of atomic level dynamics, defect physics, non-

S ) v In general, this is done by averaging all pertinent variables
equilibrium thermodynamics, and transport kinetics. Most 9 y ging a’ p

. such as the induction field vector and the permittivity over
numerical analyses reported thus far have fallen short of thig,, composite medium viewed as a continuum consisting of

goal for a variety of reasons. While numerical approaches, matrix with inclusions. This suggests that, in the long-
may be exact in principle, the true form of the randomness igyavelength limit, the observed bulk material should be de-
unknown. The high computational cost of averaging over axribed (almosy completely by an “effective” permittivity.
large set of system configurations makes it difficult to obtainwhat precisely this “effective” approach really entails is still
well-converged estimates of the observables. Current rea controversial issuésee, e.g., Ref§6,22,31). Recent very
search is pushing available approximations to the descriptiodetailed numerical calculations by Brosseau and Berffjal
of fluctuations on the hierarchy of length scales which arefor regular arrays, i.e., translationally invariant, of 2D and
relevant to the problem. Actually, the cross-fertilization be-3D inclusions embedded in a uniform matrix, indicate that
tween computational and analytical work in the area of comthe spatial arrangement of the constituents in the mixture is
posite materials is quickly growing. Unfortunately, currentreflected in the manner in which local fields are established.
feasible representations for tke priori knowledge of the Despite the status of periodic systems as benchmark materi-
microstructure of the composite, such as the correlation funcdls for the study of composites, many aspects of the physics
tions that specify the average microscopic arrangement of th@f composites require better theoretical explanation and still
constituents, require significant experience in the construdhspire a wealth of interesting ongoing reseaf28,29.
tion of reliable and solvable microstructures. The primary, While these EMT have greatly advanced our understand-
reason for the limitation of “exact” calculations of the prop- N9 Of wave transport in heterogeneous materials at a funda-
erty of interest, especially for continuum models, has beer’lﬂ.ental level, the'r.ab'“ty to make guantitative preQ|ct|ons IS
the lack of efficient algorithms suited to generate collectionstslj'rl:azotan;"\gar‘]t gzznclbergtglliler(ta%rtgseﬁcgc?lzQ%jaetlerrri]ggog}rmér-
e b 5. . mpracicait of ny approsch based on knoving
; . o - 4 Sthe full topology of the system. A real composite system

may arrive at different descrlptlpns of thelr”propertles. Yelmyst ultimately be described statistically through the speci-
even if this "disorder representation problem” were solved inications of an infinite set of multipoint correlation functions
its entirety, the would-be-composite designer would still faceyhich characterize the microstructure of the two-phase me-
the formidable tasks ofl) finding the starting entities that gjym [6,24,33. A comprehensive discussion of these micro-
will maintain their structural integrity throughout the synthe- strctured correlation functions can be found in the books by
sis process, and®) controlling the morphology he or she Torquato[24] and Milton [6], and we refer the reader to
wished to engineer. As testimony to these difficulties, it iSthese texts for further specifics. It has been argued that a
not uncommon to find in the literature disagreements ovegerious issugregarding inverse transformation problems in
the predictions of the porosity, mean coordination numbergenera) is that while the effective permittivity can be deter-
and radial distribution functiof22,23. We will return to this  mined for a particular microgeometry, the reverse problem is
point later. But let us take a step backward and discuss th§.conditioned in the sense that many different microstruc-
effective-medium approach within continuum models. tures could produce the same permittivity data. Another ob-
jection to EMT is that they do not allow for the spatial cor-
relations between the inclusions, i.e., each component is
surrounded by the same effective medi{@3]. Limitations

For decades, other theorists have developed approximaté the earlier dipolar approach have called for an extensive
analytical theories to describe the electromagnetic propertieenewal of the enabling theoretical and experimental meth-
of macroscopically inhomogeneous media. The main thrusbdology towards modeling transport properties by taking into
of this field has so far been extensive exploration of theiraccount the multipolar character of the particle-particle inter-
applications, although some of their fundamental propertieactions[32]. The shortcomings of the above methods have
were characterized experimentally. Given the empirical nabeen dealt with to some extent through combined approaches
ture of calculations of the complex effective permittivity of (see, e.g.[33]) and improved strategies for estimating the
disordered materials, and the lack of direct comparison withmportant parameters characterizing the electromagnetic
experiments for validation, first principleb initio calcula-  transport through disordered materials.

B. Basic facts about the effective-medium approximation
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C. Motivation and plan of the paper numerical method. In this paper, we show that our method is

In the current work, we introduce a finite-element methoddenerally applicable to various continuum systems and accu-
(FEM) for calculating the effective permittivity of macro- rately improves .the estimate for the _effgctlve permittivity of
scopically inhomogeneous media. This paper is the first incontinuum media where local permittivity varies randomly
stallment of that study and is exclusively dedicated to gefrom point to point. _
neric two-dimensional (2D) two-phase heterostructures  The remainder of this paper is structured as follows. Sec-
consisting of hard circular disk equilibrated distributions tion Il outlines the basic computational framework and a
[34]. Other papers in our study will focus on the study of thedescription of the s_|mulat|on deta_uls in terms pf wh|_ch the
permittivity behavior for 3D models and composites nearProblem of calculating the “effective” permittivity of inho-
percolation threshold. The hard-disk distribution has beefnogeneous two-phase materials can be approached. The ex-
chosen as the reference system since it is one of the simplgdCit numerical results from our simulations of well-
idealized models to explain structural and kinetic propertie€quilibrated random distributions of equal-sized disks are
of matter[34-39, e.g., disk configurations in the plane have summarized in Sec. Il We consider a number of test cases
been advanced as a simple model for the arrangements it demonstrate the utility of our method. Calculations per-
particles adsorbed on smooth surfap#®,41. Such systems formeq in this section permit us to test the validity of this
can be in thermal equilibrium or in one of the many nonequi-numerical scheme by comparison with upper and lower
librium states. While particles in equilibrium have thermalPounds on the effective permittivity, and with results ob-
motion such that they sample the configuration space unf@ined from conventional EMT. The paper is concluded in
formly, particles in nonequilibrium states usually do notS€c. IV with-a summary of our results, of possible future
sample the configuration space uniformly, since they do no@Pplications of the numerical approach developed here, and
diffuse after they have been placed into the systed). The  Of some open questions.
primary purpose of this paper is to present a practical algo-
rithm for calculating the effective permittivity of a random
2D statistically isotropic composite in equilibrium consisting
of impenetrable circular disks of phase 2, with permittivity = Over the past two decades, computer simulation has
g, and surface fractiow,, randomly dispersed in a matrix of proved itself to be a valuable tool, offering insights into the
another dielectric phase, say 1, with permittivityand sur-  relationship between the dielectric properties of multiphase
face fractiong;=1-¢,. The 3D analog of this model would composites and their microstructure, an issue of central im-
be a composite consisting of parallel infinitely long and eq-portance in condensed-matter research due to the wide vari-
uisized cylinders with circular cross sections of phase 2 inety of heterostructures which exist in practice.
serted in the phase 1, i.e., all interfaces are parallel to a fixed
direction. Such a composite has a transversally isotropic
symmetry and the dielectric properties can be described by
two parameters, one corresponding to the direction of fibers Two approaches have received wide recognition in the
and another one corresponding to the transverse directiotheory of random heterogeneous material. In the first ap-
While the value of effective permittivity in the direction of proach, the microgeometry may be chosen to follow as
fibers can be found exact[R9], i.e.,e =&, +&,¢,, finding  closely as possible the phase arrangement of a given sample
the transverse component is a more difficult task. A numbeof the material to be modeled, obtained, e.g., from transmis-
of earlier works[13,18,22 have considered a numerical ap- sion electron microscopy images. The resulting description is
proach to this problem. These early investigations focus owalled a “real structure” mode[9,24,43. The structure
modeling the effective conductivity of several systems in-analysis in such materials is complicated due to the presence
cluding the case of 2D regular arrays of perfectly conductingof the multitude of length scales, and because the experimen-
disks. It would be beneficial to determibeththe structural tal probes used have different, and often limited, space and
parameters and the dielectric characteristics within the samt#me resolution. In addition, there are certain problems with
numerical scheme. Given the importance of models of twothe interpretation of the imagd43]. Consequently, all this
phase materials, there is a need for systematic investigatiaipartial) information is insufficient for uniquely finding a
of how the randomness and connectedness influence the eftodel for the microstructure. The second approach is based
fective permittivity. The major purpose of this paper is toon statistically based algorithms for reconstructing the mi-
contribute to the investigation of the structure property forcrogeometry. This approach allows systems with both arbi-
such systems by computer simulations. This kind of informa-trary shapes and arbitrary dielectric characteristics to be con-
tion is required for identifying the mechanisms of polariza-sidered. In the current work, we shall use a probabilistic
tion and conduction in real systems, e.g., thin films made bynodel to represent such “numerical structure.”
sputtering by ion bombardment often have a columnar struc- The traditionalMETROPOLIS sampling[24,44 scheme is
ture, similar to what we consider here. Here, we will con-adapted to generate equilibrated sets of realizations for the
sider a two-step calculation process. On the one hand, wstatistically homogeneous and isotropic composite which is
generate the random medium using a MC method. Dislstudied. The basic parameters in this model simulation are
packings are created by placing a number of particles withirthe lengthL of the square primitive cell side, the numbsr
a square cell with periodic boundary conditions. On the otheof hard disks, their diametdd, and their surface fractiot,.
hand, we get the effective permittivity using a FEM-basedThe following is a brief explanation of the key steps of this

IIl. NUMERICAL IMPLEMENTATION

A. Two-phase microstructure
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algorithm. First, an initial configuration of particles in a unit - [-———

cell is generated. We used a random starting configuration =% S

which enables us to attain more rapidly equilibrated sample h

realizations. Depending on the value ¢4, different strate- @ 0 =

gies for random placing are used. uft . gkt [(Q=CONSt
For small values of¢,, we use the random sequential 0

addition (RSA) process[45] because it is fast and easily ©=0 I

implemented on a computer. The procedure starts by posi-
tioning the desired number of particles randomilising a
uniform distributior) and sequentially in the initially empty
square cell. If a particle can be placed into the square cell
without overlapping with other disks, then it remains fixed at
this position throughout the simulation. If the particle over-
laps another existing particle in the cell, then another attempt
is made until a nonover|apping location can be found. As this FIG. 1. lllustration of the calculation of the effective permittiv-
acception and rejection process continues, it becomes moi# of composite.
difficult to find available regions into which the disk can be
added, and in the saturation lingfor monodisperse circular simulation. This means that the unit cell containing the par-
disks, ¢3"=0.59, no further addition is possible and the ticles is repeated periodically within the plane to form an
process Is over. infinite lattice. With an infinite number of particles in the unit
For ¢,> ¢3%, an alternative approach is used for generatell, theMETROPOLIS algorithm produces statistically homo-
ing the initial configuration which is based on the Clarke andgeneous and isotropic equilibrated ensembles of hard circular
Wiley collective rearrangement method that was initially de-disks.
veloped for generation of a random close packing of hard For completeness, it is worth observing that other proce-
sphereq46]. At the start, a required number of particles aredures for generating random particle packings were de-
randomly placed inside a square cell according a unifornscribed in the literaturg24,47-52, to which the reader is
distribution. In general, there will be steric overlaps amongreferred for additional information.
the disks. To reduce these overlaps, the disks are then moved
one at a time along the vector sum of the overlaps. Moving a
disk along the vector sum of the overlaps may reduce orB. Model of the effective permittivity and its basic equations
eliminate some overlaps but will create or increase others. To To investigate in some detail the dielectric properties of

avoid increasing overlaps, a move is accepted if it does NYeterostructures in the guasistatic limit, a method suitable for

create any overlap larger thgn the maximum overlap amongetermining the effective permittivity is needed. A detailed
all the disks. Thus, the maximum overlap always decrease

¢ remains constant. If the move is not accented for ar(§escription of the method can be found elsewhgs8],
or remains constant. € MOoVe IS not accepted for a p though the relevant relations are included in this subsection.
ticular disk, the disk is moved again in the same direction b

; A YAn illustration is useful at this point.
a smaller amount. .If th's Qperatmn IS not succe_ssful after a Figure 1 shows that we consider a parallel plate capacitor,
few attempts, the disk is given a small random dlsplacemen(Nith conducting plates of ared and separation distande

Again the MOVve 1S accepteq or rejected depending Ohich is filled with the composite medium to be studied. The
whe?herthe maximum overlap is Iess_ than or greater than thFnacroscopically inhomogeneous medium consists of two
maximum overlap among all the disks. Each disk in thet

L . . ) . f isotropic dielectric materials, 1 and 2, with permit-
packing is moved sequentially in this way until there are noypes of isotropic dielectric materials, 1 and 2, pe

| S " disk be locked int .ttivities g4 and e,, respectively. Here the permittivity is a
more overlaps. SOometimes any disk may beé 10Cked INto g 44, /e guantity compared to the free space permittiggy
position, i.e., it cannot be moved without creating an overla

equal to or less than the maximum overlap among all disk%&85>< 107 F 7. A constant potential differencey is
In this case, all disks are vibrated by giving to each disk ept between the capacitor plates. Assuming that small

small random displacement and the process is continued. aenough S0 that fringing effects can be ignored, then the ef-

L ) S fective permittivity & of the composite can be determined
After an initial configuration is generated, MC cycles are b ye P

. . AT from the ener stored in the capacitor as
started in order to drive the system to equilibrium. At each g ! paci

MC step, one attempts to move randomly the center-of-mass 1 s,

coordinate of each disk. The new configuration is accepted if W= €5, (2.1)

the particle does not overlap with any other particles. If the

attempted move causes an overlap, the particle is not movethere £,=8.85x 1072 Fm™ is the permittivity of the
and the new configuration is the same as the old one. Theacuum. This definition ensures us that the energy stored in
maximum amplitude of the MC moves is adjusted to give arthe capacitor would be the same if the composite medium
approximately 50% acceptance ratio. This process is rewas replaced by a homogeneous medium with permittivity
peated until equilibrium is achieved, i.e., when the pair cor-subject to the same boundary conditions. The engvgsan
relation function does not change with time. In order to mini-also be expressed in terms of the spatial distribution of the
mize boundary effects due to the finite size of the systemglectrostatic potentiap(r) inside the capacitor if the micro-
periodic boundary conditions are employed in the presenscopic structure of the material is known. Since the compos-
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ite considered here is locally isotropic, the eneWjys without loss of information or generality. However, a random
1 composite cannot be characterized by a simple periodic cell,
-z 242 and the study concerns a finite size of the system. Thus an

w sofﬂs(r)[Vgo(r)] o, (22 approximation should be introduced. The physical idea is

actually quite simple: it is based on the substitution of the
wheree(r) is the local dielectric constant, where the integralcomposite by its representative surface elen{®8B. The
in Eq. (2.2 extends over the surfac@ of the capacitor. analysis is in fact performed on the RSE instead of the whole
Thus, determining the effective permittivity of the compositecomposite sample. In practical terms, the candidate RSE
medium requires knowledge of the distribution of the localshould be a surface of the composite material that is struc-

electrostatic potentiap(r). turally typical of the whole composite on average, small
For that purpose, one can solve the following boundary£nough from a macroscopical point of view, but sufficiently
value problem: large compared to the characteristic scales of the microstruc-
ture in order to contain a large number of single inhomoge-
V [e(r)Voe(r)]=0 (2.3 neities(particles. In this sense, the RSE is statistically rep-

. . . ith th . _ h resentative of the microgeometry of the composite material.
in conjunction with the boundary conditioggon=0 atthe gt eyen with this definition, the size of the problem can be

bottom plate andpiep=¢, at the top plate. Edge fringing o0 Jarge from the numerical standpoint. To avoid this prob-
effects can be eliminated by the periodic extension of thgem and to satisfy the aforementioned conditions, a cell of
capacitor. For that purpose, we apply periodic boundary corveasonable” size is constructed and periodicity of such cell
ditions on the left and right boundaries of the unit cell. Pe-is assumed. Then, the ensemble-aver@dtective) permit-
riodic boundary conditions mean that the two boundariesivity of the composite is found by averaging over many
should be treated as identical. Two conditions are requiredieglizations of the structure of the system, i.e,
(1) it must be possible to transform opposite faces into eack (1/A)s! &', where A denotes the number of realizations
other by a simple translation, art@) for each pair of faces and¢ is the effective permittivity of a particular realization.
the phase distributions and the FE discretization must b jike fashion, the variance of the permittivity is given by
compatible. In addition, the potential and its derivatives ar8are=(1/A)Sh, (e~ £)2
supposed to be continuous along a line that approaches the |t has to be noted that in the case of an infinite number of
right boundary from inside the domain, jumps to the corme-particles in the unit cell, theteTROPOLIS algorithm would
sponding location on the left boundary and from there conprogyce an isotropic material. Consequently, a single value
tinues into the domain. Stated in other words, it requires thas the effective permittivity suffices to describe the dielectric
the cells together with boundary conditions prescribed Orhepavior. But here since we consider a finite number of par-
them generate valid tilings both for the geometry and thjgjes, the unit cell is anisotropic. We have directed the coor-
potential ¢. To achieve this, the potential is constrained tOginate axes along the unit-cell continuation vectors, and for
have equal values in corresponding points on the left andach equilibrated realization, the values of effective permit-
right boundaries of the unit cell, i.epen=¢rignt It should be ity in the x andy directions, respectively, have been cal-
noted that though our unit cell is periodic in two directions, ¢ jjated. We assume that the valuesbfin the above expres-
periodic boundary conditions can be applied just in one okjo of ¢, is the average of these two values.
them and consequently the potential will be periodic in one  one additional issue that needs to be addressed concerns
direction. We note also that for simple square and hexagonghe ynit-cell construction scheme used in the current work,
unit cells in which the faces of the cell coincide with sym- \yhich requires that particle-particle contact be avoided, i.e.,
metry planes of the phase arrangement, i.e., the unit Céfhere is always a minimum allowable separation distafice
exhibits a plane of symmetry both for material properties angyeyeen disks. Why is it thad is so important? In many
geometry, periodic boundary conditions simplify to symme-eyperimental approaches to dispersion and self-assembly of
try boundary conditions expressed by the condiforV ¢ panoscale colloids, surfactant in the form of oligomers or
=0 at the edge planes. On any interface between regions of do\ymers is added in order to improve dispersability or to
and 2 materials, the potential and the normal component Qfontrol the onset of self-assembly. Thus this geometric pa-
the displacement vector are continuous, i®=¢, oN 9> rameter,s, can play a role to describe encapsulation of the
and ein- Ve =s,n- Vg, on d%, where the superscripts 1 incjysions. One natural explanation is that connections be-
and 2 label the two regions separated by the interf@e  tween particles form singular geometries and the automatic
and the vecton is normal tod. mesh generator may produce very thin triangles when they
approach the sharp corners of the geoméitythe points of
contacj, leading to poor element quality and as a result
yielding a large numerical error. On the other hand, when the
With such numerical computation, the hard work comesdistances between particles are too small, it becomes impos-
in addressing the issue of the representativeness of the finitgble to construct and mesh such RSE’s. It should perhaps be
surface of the composite that is required for describing itsmphasized in this context that even if RSE’s could be con-
effective dielectric properties. A careful examination of this structed and meshed, it would produce a very large number
problem is done in this subsection. It should be mentionedf triangles. Consequently, a solution of the FEM system of
that in the study of a periodic composite, the investigationequations would be prohibitive in terms of computational
may be limited to an elementary cell of the periodic structurecost. To circumvent these complications, we consider the

C. Representative surface element
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idealized problem obtained by this no-contact requirement =) db S 50
between inclusions. Thus, the particle contact artifacts o P O
caused by discretization errors can be avoided. In general,
this constraint has the effect of producing an underestimate
of the effective permittivity, especially for high surface frac-
tions of inclusions. The physical reason comes from the fact
that particle contacts which form connected clusters leading
to significant potential-bridging store the large energy con-
centration and, in turn, strongly influence the effective per-
mittivity. Allowing a larger minimal distance between par-
ticles will give lower values of effective permittivity. The
point that needs to be kept in mind is the fact that there is no
universal optimum value for the paramet&mifferent unit-

cell construction schemes lead to different optimum values,
even for the simple case of disks. These considerations indi-
cate that the value of has to be chosen carefully. It must
permit RSE’s to be constructed and the energy concentration
at the interface of particles to be simulated adequately with a
high degree of mesh discretization; simultaneously, the size
of the numerical problem should be in a diapason of our
computational power. Hence, for numerical efficiency, it is
extremely important to determine an appropriate RSE for
high permittivity contrast and high surface fraction that has
the optimal size and number of particles.

~ UULthOQ
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FIG. 2. Typical equilibrium configurationsample realizations
of the two-phase composite consisting of monodisperse circular
disks randomly distributed within a square primitive cell. The
sample packing results from the sequential algorithm described in
the text applied to a binary mixture with a given surface fraction of
To summarize and to aid in the implementation, our self-disks. (a) ¢,=0.1, (b) ¢,=0.3, (c) ¢,=0.5, (d) ¢»,=0.6, (€) &,
consistent procedure for the calculation of the effective prop=0.7, (f) ¢,=0.8,(g) #,=0.82,(h) ¢,=0.83, and(i) ¢,=0.85.
erties of a random composite is as follows. ) ) ) )
(1) Generate randomly distributed disk configurationsa”d unless otherwise stated, the disk diameter was main-

without overlap in a square box for a specified disk surfacd@ined constant ab=0.09. We were able to model dense

fraction and permittivity of each component, using the Stan_monodisperse circular disk configurations with a particle sur-

; - face fraction up top®*=0.85. It is worthy of note that this
S?Irtd (i‘\AeITIT(F){;) zg;:x}s s?zl?zoznihvrva[ssﬁtziﬂhpi\npzlrllcégliuslgiji(?:]es value agrees well with the estimates of the RCP of hard disks

. ) . . which have been published in the literatf5,50,54-5%
The number of disks in the unit cell varied from 16 fép T
~0.10 to 134 for,=0.85 (Fig. 2). The dependence of the The ensemble average was done over 100 realizations. The

fM hi ilibri -
permittivity on disk diameter is shown in Fig(88. We ob- number of MC stepdlyc needed to achieve equilibrium de

. pends onp, and will be discussed in Sec. lll. The generation
serve a good convergence f@s<0.4. During all the runs, ¢ the random numbers was done by an intematLAB

the higherd,, the smallerD is required to achieve conver- fynction which uses a lagged Fibonacci random numbers
gence. We explored a number of uniform disk d|ameter§ begenerator, with a cache of 32 floating point numbers, com-
tween 0.089 and 0.357, and we found that convergence is n@ined with a shift register random integer generd6ir,61.
obtained for large values af,. In Fig. 3b), the variance of (2) Carry out the calculation of the effective permittivity
the permittivity is plotted as a function ap, for different  using the FEM software packagemMLAB [62] with the aid
values ofD. It should be stressed that the variance increasesf MATLAB environment[60]. FEMLAB has an automatic

asD is increased. In addition, we observe that the sensitivitynesh generator which uses a Delaunay algorithm and has
of the results td is more pronounced at higher values#yf  many parameters for controlling the size and the density of
than at lower values. The physical reason is that contactthe element in the mesh. Quadratic triangular elements were
between disks form connected clusters leading to significandsed for discretization of the unit cell. It should be noted that
potential-bridging, which corresponds to high electrostatiche meshing of our model domain takes into account the
energy(hot spoj and greatly influences the valueafHow-  border between the matrix and disks, i.e., the mesh is auto-
ever, this effect is counterbalanced by the influence of thenatically adjusted to conform with substantial changes of the
distanced between particles, i.e., increasing the number ofmaterial parameters. The number of nodes used in the calcu-
disks in the cell has the effect of increasing the number ofations depends on the surface fraction of disks, e.g., it is
gaps and thug decreases. We found by a trial-and-errorabout 5000 for small surface fraction to about 100 000 for
approach that=0.0005 was a good compromise: it allows the highest surface fractions. The effective permittivities in
us to construct and mesh unit cells and simultaneously tthe x andy directions are found for each realization by ap-
obtain systems of equations which are in diapason of ouplying a unit potentialgy=1 V, in the corresponding direc-
computational power. In the calculations discussed belowiions with the same boundary conditions.

D. Further computational details
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B tural correlation functions, e.g., the Percus-Yevi@RY)
21} (a) =1 i equation. The RDF for hard disks has been largely studied in
18  £=1000 ,’ ] the literatureg[24,64, but unfortunately the PY equation can-
151 2 ] not be solved analytically fod=2.
;o The RDF is usually referred to as the pair correlation
€ 12t ’ 1 function, which describes how, on average, the particles in a

. system are radially packed around each other. It is defined as
] the probability of finding one disk center at a given distance
r from the center of a reference disk. Within the computer
simulation, it can be obtained by generating a histogram in
; the following manneif24]. The surface around each disk is
a divided into concentric shells of finite thickneds, and the

10’
o number of disks in each shefi(r) at radial distance is
107 ; counted and divided by the shell surfagg,(r) to obtain the
vare 107 1 local density. The radial distancds assumed to be midway
107 ] between the inner radius-Ar/2 and outer radius+Ar/2
3 of the shell. To obtaim,(r), the densities at each distance are
10 ; then averaged over all particles and normalized to the num-
10 1 ber density of particles, i.ep. The statistically isotropic me-
10° ey dium considered here implies that thedependence of the
000102030405060708 RDF is given by
2
n(r)
FIG. 3. (a) The dependence of the effective permittivity as a go(r) = N— (3.9
PUshell

function of ¢, for random configurations of disks witty=1 and

£,=1000. Dash-dot-dotted, dash-dotted, dotted, dashed, and solrfio obtain a reliable statisticgy(r) is calculated by taking an
cu_rves corresponq D:O'?’S?’D:0'25.2’D:0'178’D:.0'126’ and average over many generated configurations. In this work,
D-O.989, resp'e.ctllvely. (b) Same as ina) for the variance of the Ar was set to 0.0.
effective permitivity. Figures 4a)-4(d) display the influences of the reduced
) o _radial distance and number of MC steps on the RDF when
(3) Average the effective permittivity of the composite e gyrface fraction of disks is held fixed. How well are the
strupture over all sample reallzatlons_. All calculations Wer€resulting configurations equilibrated? The quality of the
carried out on a 2.4 GHz Intel Pentium 4 system runningeqyilibration can be judged from the evolution of the RDF’s
Windows. as Nyc is varied. The number of MC steps required to
achieve equilibrium increases dsg increases from typically
lll. RESULTS AND DISCUSSION 10 for ¢,=0.3 to 3000 for¢,=0.7 to 10 000 and more for

To illustrate how the numerical scheme described abovfzzo's' This panel of figures exhibits two remarkable fea-

works in practice, we performed repeated calculations fo ures of the RDF’s. First, the first peak is the highest in the

various surface fractions and permittivity ratios. Here we DF's for all surface fractions. The “periodicity” of the

show the results for structural aspects in terms of the radieﬁggkbse'i(i%\g”tfgt by thﬂiggsrgestesr (:t'gllsgsr.rgi?glr?sn%"yi dlt
distribution function and the mean coordination number, i.e. ! ah, | » spatl : Ul

the number of inclusions in contact with a considered inclu-Up and Ie_ad to nontrivial struct_ure By(r): the first peak is
lightly displaced to smaller distance. Second, as the RCP

sion. In order to test the code and validate the method, w& ; o S .
calculated the effective permittivity of binary mixtures of surface fraction for equilibrated distributions is approached,

hard disks and compared the numerical results with thosk,arger qucFuaj[ions in the peaks of the RDF appear. This af-
obtained from conventional EMT and predictions from ects qualitatively the shape of the RDF profile that now
bounds exhibits oscillatory behavior.

We have also looked at the RDF of the random configu-
rations of disks that we generate for our simulations and
compared them to the distribution function of a mixture of

There are many statistical descriptors of a random heterdiard disks, as predicted from solution of the PY integral
geneous material defined by an ensemble of many-particlequation. Figures (8)—5(d) depict the observed and pre-
systems. For statistically homogeneous media, the most basiticted g,(r). What is interesting is that the results are prac-
statistical descriptor which provides structural informationtically indistinguishable forp,<0.69 over the whole range
about the equilibrium system is the radial distribution func-of r/D, but the most glaring difference between PY theory
tion (RDF). It should be recalled that whereas the propertiesand simulation arises fo#,>0.7. For such a case, the PY
of a hard-rod(d=1) system are known exactlj63], not a  theory does not accurately capture the positions of the peaks
single exact result is known whedv 1. Consequently, one in the RDF, in agreement with the fact thaf=0.7 is slightly
resorts to some approximate integral equation for the strudaigher than the surface fraction at which an ordering transi-

A. Radial distribution function g ,(r)
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1.0 00
0.5+
0.0 e .
0 FIG. 5. The dependence of the radial distribution functjg(r)

hard disks as a function of the dimensionless radial distafid€or
different surface fractions of disks. For comparison, the solid curve

FIG. 4. The dependence of the radial distribution functigh)  shows the corresponding values of the RDF calculated within the
hard disks as a function of the dimensionless radial distafgor  percys-Yevick approximation.(@) #,=0.3, (b) $»,=0.5, (C) ¢,

different surface fractions of diskB1=0.045. The filled squares are - g5 and(d) ¢,=0.7.
simulation data for a nonequilibrium system, the solid curves are

evolution of systems at various stages of the equilibration proce- . _ _
dure, i.e., for different values dflyc ranging from a few tens to a " @ line over the limited range of data used. Our prediction

few 10, and the filled circles are simulation data for the hard disksCf $=1.010£0.016 is very close to unity in the limit that

system in equilibrium. The arrow indicates the evolution of the $2— ®2c- Here ¢,.=0.862.

profiles of g,(r) as Ny,c steps are increased(a) ¢,=0.3, (b) ¢»

=0.5,(c) ¢,=0.7, and(d) ¢,=0.83. B. Mean coordination number

tion is expected to apped2?2]; ¢,>0.7 correspond to meta-  The resulting packing structures are also analyzed in

stable disordered, i.e., glassy, states for which the RCP fragerms of mean coordination numb&r Mean coordination

tion has been found to be0.82[33]. number is defined as the average number of disks in contact
The last point we want to focus on in this discussionwith a considered disk. It should be noted tizats very

concerns the long-ranged behavior of the correlations in theensitive to the definition of “contact” or critical distance,

critical region near the RCP fraction. Tobochnik and Chapinj.e., the minimal distance between two disks before they are

[65] and Song and co-workeff$6] have argued thag,(r  regarded to be in contact. In 2D, we have the following ob-

=D) diverges for¢, near ¢, according to a power law, i.e., vious steric constrainZ <6.

92(D) ~ (o= ¢po)~° with s=1 for d=2 and 3. In Fig. 6, we Because the constraint of a minimum allowable separa-

show our prediction of thay,(r) data forr/D=1 versus tion distance between disks is an artifact, we also looked at

..~ ¢, in a semilogarithm plot. The data do fall reasonablythe effect of this parameter of. In Fig. 7, the computed
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10 10.2 . ,
£=1 . fo (a)
10.1}£=10" -
5 100 N
o 106 ettt ————1
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: § 103[5=100 . ]
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FIG. 6. Scaling plot of the RDF as a function ¢§**~ ¢,. Here L] e Sveras———
r/D=1 0 0.102030405060.70.80.9

2

values ofZ of the hard-disk system are shown as a function FIG. 8. Comparison of our FEM data ferwith those obtained

of the surface fraction of disks anfl Expectedly, the mean from Eq.(3.2). Solid squarescircles correspond to FEM data with
coordination number increases monotonically as a functiompplied periodic(symmetry boundary conditions(a) e,=1, &,

of ¢,. Upon an increase of the paramei@rthe effective =10, (b) e1=1, £,=100, and(c) &;=1, £,=1000.

permittivity increases. In all cas¢sot shown, we observed

a similar trend as displayed in Fig. 7. We mention that oursons of consistency, we treat it, in the present work, in terms
results forZ are in close agreement with those obtained inof permittivity. It can be applied to any 2D two-phase com-
previous simulation studig®2,31. The increase i@ has the  posite as long as theandy axes are the principal axes of the
effect of enhancing the polarization of the inclusions. effective permittivity tensor, i.e., regardless of the phase ge-
ometry. It states that the effective permittivity determined in
the x direction for a medium in which the inclusiorithe
matrix) have permittivitye; (e5), €*(1,&5), is related to the

The previous subsections described procedures that coeffective permittivity of the phase-interchanged composite in
stitute the structural stage of these simulations. The preserthey direction,s¥(e,, e4), independently of the specific struc-
and following, subsections discuss how equilibrated arrangeture by the following equation:
ments of disks affect the effective permittivity.

Keller [67], and Dykhne[68] showed more than three e'(e1,80)8%(e2,81) = €185 (3.2
decades ago that continuum composites with a 2D microge- gefore checking Eqe3.2) with our results, we first note
ometry have a specific symmetry, namely the duality. Th§a¢ 5 proplem arises due to the fact that we have calculated
generahza’qon of _these d.“"?‘".ty relations, e.g., o th? case Qlftective permittivitye* (¢¥) in directionx (y) with periodic
general anisotropic permittivity tensors, has been given by %oundary conditions applied just along ayigx). It means
number_ of authors including Mendelsded], Balagurpv that actually we have calculated effective permittiwity(sY)
[70], Milton [71], Durand[72], and Schulgass€i73]. It is fathin| fth " tem in directipfx d
worth noting that the dualitfor phase exchangeelation ofa thin fayer of the composite system in directyp ), an .
was first derived in terms of conductivif,33, but for rea- consequently, Eq3.2) cannot be used directly for compart-

son with our results. Note that the calculated effective per-
mittivity incorporates information about 2D periodicity be-

C. Effect of phase interchange and duality relations

6 ! cause it is averaged ovet* and &Y. For our purpose, we

5L carried out calculations of the ensemble-average permittivity
of the same system but when symmetry boundary conditions

4}t are applied to the lateral side of the periodic cell, i.e., we

7 restrict our calculation to a unit cell without taking into ac-

3 count periodicity. Thus we fulfill requirements of E@.2).

ol Comparison of the FEM results with those obtained from
Eqg. (3.2 is displayed in Fig. 8 for cases when periodic and

1t symmetry boundary conditions are applied. As can be seen
from Fig. 8, our results with symmetry boundary conditions

00 010203040506 070809 are in excellent agreement with relati@2). Another obser-
vation is thate corresponding to cells with applied periodic
boundary conditions is higher than the corresponding value

FIG. 7. The dependence of the mean coordination nurher ~ Of & for cells with applied symmetry boundary conditions
surface fraction of disks at varying the minimum separation dis-because in this case the FEM scheme takes into account the
tances allowed between disks from 0.001 to 0.01 with step equal tointeraction between particles of neighbor cells while symme-
0.001. try boundary conditions do not “see” these patrticles.

2
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FIG. 9. Schematic of the FEM-calculated electrostatic potential 4r
(top) and energybottom) in the unit cell with surface fraction of 2r
hard disks ¢,=0.5. (8 £;=1000, e&,=1; (b) &;=1, o ¢ ————t +
£,=1000. The bars on the right give the values of the potential 21l (©) £=1 !
and the energy corresponding to the graytones. 18l 52=1000 ] '
As an aside to these calculations, Fige)@&nd 9b) show 15¢ ° .:;i'_
the electrostatic potential and energy for two types of mix- e 12} o J7
tures: (a) when the inclusion permittivity is lower than the of 2 '/.;’; g
matrix permittivity e,/e;<1, and(b) an inverted mixture 6l o°°°.-;‘-"" it
where the inclusion permittivity is higher than the matrix 3 RS e”
permittivity e,/ £, > 1. These graphs, which provide informa- | carmpapneetB T o7
tion on the variation of the local electric field, reveal the 0

. the local electric fie 01020304 0506070809
presence of regions of high field intensity inside the compos- 0 P
2

ite. The energy in such systems flows along trajectories
(chainlike structures avoiding low-permittivity regions in

. TRET FIG. 10. The dependence of the boundsas a function of the
favor of regions where the permittivity is high.

surface fractiong, of disks for e,/e,>1. Dashed, dash-dotted,
dotted, and solid curves correspond to the one-point, two-point,

D. Upper and lower bounds on the effective permittivity three-point, and four-point bounds, respectively, and the solid

) . . circles are obtained by FEM. Upper bounds are not showb)n
As was recalled in the Introduction, the determination Ofand(c). For comparison, values efobtained from the Bruggeman

the effective permittivity necessitates knowing an infinite setequation are also represented by open circles.

of correlation functions which statistically characterize the

microstructure of the two-phase medium. However, in practhat the three-point parametép has been computed for
tice such a complete statistical characterization of the merandom-media models, including the random distribution of
dium is almost never known. Given limited microstructural hard (impenetrablg disks in a matrix, by several investiga-
information on the composite, a number of upper and lowetors [24,78.

bounds on the effective permittivitgonductivity) have been In the present paper, we used the values of the microstruc-
derived using variational principld$,24,29,74—7p For ex-  tural parametei, which were obtained from the approxi-
ample, optimal second-order bounds, i.e., B&2), which  mate relation/,= ¢,/3—0.057075+0(¢3) [22]. To test the
apply to any composite material with two isotropic compo-results, we now consider some specific examples. For a wide
nents, were established by Hashin and Shtrikman in 196ange of the permittivity ratice;/e,<1, Figs. 1@a)—10(C)

[74]. Over the years, progressively tighter bounds havelisplay a comparison of upper and lower bounds on the ef-
emerged, e.g., Eq$A3) and(A4). In this area, we note the fective permittivity and the calculated data in the present
work of Silnutzer[77] and Milton [71] for any isotropic  work. Figure 10 indicates that the fourth-order bounds are
two-phase material. The Silnutzer bounds depend upon amarrower than the third-order bounds which significantly im-
integral £, which involves the three-point probability func- prove upon first-order and second-order bounds. Figure 10
tion S;, whereS,(rq,...,r,) denotes the probability of find- also shows that the fourth-order lower bound provides an
ing n points at vector positions,...,r, all in one of the two  excellent estimate of the effective permittivity for a wide
phases, say phase 2. Milton’s bounds depend alsg,dout  range of surface fractions up ¥,=0.7, in agreement with

on the four-point probability function ,S It is noteworthy the fact that the bounds become progressively narrower as
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I S
900 A~ £=1000 (c) FIG. 12. Compa_lrison of the FEM _sir_n_ulation datdled sym-
8001 Y e=1 i boIs) for t.he normallz.ed.effectlve permittivity/ e, of 2D arrays of
: AR 2 a disk with the prediction from exact mod€]31,8Q. The three
700 P ~ 1 ; —
6001 o A 1 curves correspond, respectively, t3/¢,=10, 50, and«. (a)
: . . Square array(b) hexagonal array.
500¢ e, s 1
£ 400} : el : ,
300} : RN 1 m_ethods, FEM and_ analytlca[aBO], compare almost exactly
200t °°°o::‘->;,_\\\\ ] with each other, validating the accuracy of the FEM method.
100f RN
() AR z —00%badi F. Comparative assessment of the FEM approach with
0 01020304050607080.9 1 equations for predicting the effective permittivity
¢2 of heterogeneous media
FIG. 11. Same as in Fig. 10 far/e; < 1. In this subsection, the performance of the FEM approach

is compared to that of four common equations for predicting
more microstructural information is incorporatgz#,79. \t/t/]ertﬁﬁ%Ctl\/r?/inpe{fl;mttttlxltyr ?f |?h(:1mlogenlercr)]usé T?dlgi.ff Itr Irs;t
Fig. 11 is analogous to Fig. 11 but fef/e,>1. In Fig. f orth o sde 9 Ia (?[ oeto athaty cfad to'|e§ s dinere I
11, the same trend can be observed in the comparison gem, and compiementary to, that ot detailed numerica
bounds with the numerical data, i.e., the fourth-order uppe |mulat|ons._s|mulat|ons_ are virtual experiments. However,
bound provides a good estimate of the calculated data. Howhey are limited, even with the fastest computers, to explor-
ever, it is quite remarkable that the upper second-order, third"9 rela_tlvely short time and length scale;. Analytical models
order, and fourth-order bounds are very close to each othef © typlcall_y s.|mple.r and more approxmate,.but they can
the accuracy of the bound increasing as the order increaseg'.\./e dlrectl |n§|ghts Into how materials properties arise from
microscopic interactions. Moreover, analytical models can
often treat a broad range of conditions, reveal trends, suggest
functional relations for engineering applications, and moti-
vate experiments. A number of analytical equations to calcu-
Following the check on bounds ef we present illustra- late the effective permittivity for a wide variety of
tive results from simulations for regular arrays, i.e., cases focondensed-matter systems have been reported; see Refs.
which an exact solution can be derived. Note that this geom[81,82, and references cited therein. For physical problems
etry renders the two-component composite materials translan particular, there has been a long history of mixing laws for
tionally and rotationally invariant. As a standard of compari-composite materials, provided the constituent material
son, we present in Fig. 12 plots of the scaled permittivityphases do not chemically react with each other. However,
el e, for regular arrays of 2D identical circular disks embed-this set of approximations is primarily viewed as an ansatz: a
ded in a uniform matrix, as a function of the disks surfaceset of practical, useful, yet somewhat heuristic prescriptions
fraction ¢, at values of the permittivity ratie,/e,;=10, 50, for estimating dielectric properties of heterostructures. Al-

andee, respectively. We observe that the results from the twdhough an empirical description has limited transferability,

E. Comparison with exact results concerning
regular arrays
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and its ability to give quantitative results should always be 8 T - 2,
carefully scrutinized, such an approach can be quite useful in 7L (@) =1 A{:o
exploratory studies. The underlying physics of nearly all sl =10 o)
EMT models revolve around one or a combination of two atona
principal elements(1l) because of the difficulties in dealing St AA‘;w"c,o" a”
with multiple length scales, a practical approach to study 4} 933“:&’5‘:0“
such systems is coarse-graining, i.e., reducing problem to an € 3l g..oioag:un“
effective one-component system of particles interacting Rgxggggsnn““’
through the effective potential, arid) the free-space wave- 2r 8“333565 e
length of the field is assumed to be much larger than the 1 fossase®
scale of inhomogeneities in the composite. We have already 0 ' : et
used this approach to fit the microwave dielectric response of 161 (B) =1 . )
carbon black-filled polymers over a wide range of carbon ' s, ]
black concentrationf83]. This approach is more subjective 141 £=100 . o= °
than one would hope for and has led to much discussion in 12t i" R
the literature[17,33,83. Given the above complexities, it is .910 [ . o o
clear that there is strong motivation to move beyond reduced 81 N ot
mean-field approaches and to attempt a statistical treatment 6} - N °g°°
of the system. 4l e 9
Keeping the same notation as abowgeg;, ande, denote, 2l ,,.gg;;;@gségsaaggmn
respectively, the effective permittivity of the composite ma- 0 "“5‘:"" : ; .
terial, the permittivity of the matrix with surface fractiahy, (© _ .
and the permittivity of the inclusion phase with a surface 217 g=1 .
fraction ¢,. The most popular mixing laws and EMT are 181 £,=1000. | .
those of Maxwell-Garnett, 151 . . o
:8181¢1(1_A) +82(¢2+A¢1), (3.3 812' S o .
g1+ Ady(er— ) 9r PN ooo: o
Bottcher(also termed symmetric Bruggeman 6} a‘,o" R . gooo"snnunﬂc’n
3F et 582 4292880007
& 0383:300000506399883
e=et (e 81)¢28+(sz—s)A’ (34 00 010203040506 07 0.8 09
Bruggeman(asymmetrig, %,
s—g8, (e \A FIG. 13. Comparison of the FEM simulation défitled circley
: ; = ¢, (3.9 for & of random distributions of disks witk,/e,>1. Open squares,
1 %2 circles, triangles, and stars represent Maxwell Garnett, Bruggeman,
and Looyenga, Bottcher, and Looyenga formulas, respectively. For comparison, the
filled squares denote the corresponding value of the permittivity for
gl A= ¢18% 2+ ¢28% 2, (3.6 a noneqquilibrium configuration. P ’ i !

where A(O=<A<1) is the depolarization factor which de-
pends on the shape of the inclusions. For diSk'%.

ume fractions of inclusions since they are based on a dipolar
analysis, and do not take into account the multipole interac-

In order for the assessment to be reliable, calculations ofions contributing to the polarization of the material medium.
the effective permittivity should be performed with different The same higher multipole interactions that produce the per-
permittivity ratiose,/e,. Figures 13 and 14 display the nu- mittivity increase(Fig. 13 or decreas¢Fig. 14) also enforce
merical data of the current work superposed with the prediceisk clustering. This confines and localizes higher multipole
tions of Eqs(3.3)<3.6). Based on the results shown in Figs. effects to the close-packed clustered regions.

13 and 14, we see that fa@b, below 0.4, our data approach

the theoretical models as expected, i.e., the dilute 2.
As seen in these figures, Bruggeman’s asymmetrical model @isks, i.e., distribution which is not equilibrated by MC runs.

superior to the other models in the predictionepfparticu-

Figures 13 and 14 show also for comparison the values of
e calculated for a given nonequilibrium distribution of hard

Here, it should be recalled that fak,< ¢5*, we used the

larly for ¢, above 0.4. In all cases, the Bottcher and Looy-RSA process for the random distribution of disks, whereas
enga equations have been shown to have poor predictiv€larke and Wiley’s algorithm was used for higher surface
ability for hard disk distributions at high surface fraction andfractions. Three comments are in order. First, we observe that

both for very large, i.e., Figs. 18-13c), and very small,
i.e., Figs. 14a)-14(c), permittivity ratios. This is of funda-

the values ofe calculated with the RSA process and those
corresponding to equilibrium distributions are identical for

mental importance because higher multipole interactions besurface fractionsp,<0.5. This is quite surprising since one
come important when the inclusions approach contact. EMTwould expect that exclusion surface effects imply very dif-
as previously formulated certainly break down at high vol-ferent results between the RSA-obtained and equilibrium dis-
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tributions. For higher surface fractions, the valuessdbr
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culations of bounds for the equilibrium distribution is also
exact for the RSA distributioifi79].

Results from the Bruggeman equation are also shown in
Figs. 10 and 11 for comparison. The deviations between
Bruggeman values and those obtained from upper and lower
bounds increase for very large and very small permittivity
ratios. It is noted that the results reported here are in good
agreement with the results of Karkkainen and co-workers
[84], who found effective permittivity data of a 2D mixture
calculated by the FDTD method in between the predictions
of the Maxwell-Garnett and Bruggeman equations. These in-
sights may help to explain the polarization mechanisms
which characterize the dispersion behavior in heterostruc-
tures with broken-translational symmetry.

IV. CONCLUDING SECTION

We are now ready to summarize the results of the preced-
ing section and conclude with some comments concerning
several open questions.

A. Summary

We have made two contributions with this paper. The first
one is general in nature, and consists in a versatile FEM
simulation approach, in the context of 2D applications, for
quantifying simultaneously structural descriptors such as the
mean coordination number and RDF, and the effective per-
mittivity, regardless of which mechanism causes internal dis-
order. An understanding of the morphology is a prerequisite
to being able to tune the dielectric behavior of composite
structures. A reliable algorithm of easy implementation and
wide applicability was presented thé&t) prepares equili-
brated configurations of disks in a background matrix, and
(2) solves the equations of continuum electrostatics for sys-

the nonequilibrium distribution are larger than the equilib-tems of heterogeneous permittivity in random sample real-
rium one, and the difference between these values increas&ations. From our previous experience, it is important to

monotonically as the surface fraction is increased. This mayote that a critical aspect for the success of any sequential
be due to the following fact: at equilibrium, the disks are method concerns the manner in which the packing construc-
uniformly distributed in a surface, whereas in the nonequi+ion is done. We should not leave this part of our presentation
librium distribution clusters of disks can be formed leadingwithout reminding the reader that our method introduces a
to larger values of. From a practical point of view, we must geometric parametef which defines a minimum separation

be aware that the calculated valueseofor nonequilibrium

distance between the inclusions. The results do not answer

distributions fore, > $5* are very sensitive to the algorithm the question of what is the optimal value f@rand it should
which is used for generating the initial configuration. Figuresbe evaluated on case-by-case basis. This study focused some
13 and 14 show also that, as the surface fraction of disksf the practical issues confronted when performing FEM and
approaches the close packing fraction, the difference beviC simulations, e.g., the number of MC steps needed to

tween equilibrium and nonequilibrium values eftends to

achieve equilibrium.

decrease because of the large entropy decrease of the systemThe second contribution from the current work is specific,
Second, and in like fashion as the equilibrium situation, theand consists of a set of information from FEM simulations
values ofe calculated for the nonequilibrium distribution are for random mixtures of two constituents with different per-
between those obtained from the Maxwell-Garnett andnmittivities. We have demonstrated the efficiency of our
Bruggeman formulas. Third, we also verifieabt displayed method by applying it to a number of test cases. Collectively,

in the figure$ that the nonequilibrium values efare within

all of the above simulation results assess the accuracy of the

the fourth-order bounds calculated for the equilibrium distri-calculated values of the permittivity for 2D lossless systems
bution, in agreement with the facts that the RSA-obtainedand agree fairly well with the results already available in the
and the equilibrium distributions are identical at the level ofliterature. Our calculations confirm the general rules that the
the third virial coefficient, and that the value of the three-bounds become progressively narrower as more microstruc-

point microstructure parametéy which is used for the cal-

tural information is incorporated, but the methodology that
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we present is also useful for examining those cases for whichaboratoire d’Electronique et Systémes de Télécommunica-
the general rules do not apply. Such a comparison is criticdions is Unité Mixte de Recherche CNRS 6165.

in order to ascertain the numerical scheme accuracy, the

range of applicable inclusion surface fractions, and to guide APPENDIX

future improvements. As far as we know, there are no avail- - Thjs appendix is meant to summarieriori estimates of
able experimental data with which to compare the predlcteqlpper, i.e.,sﬂ), and lower, i.e.,sﬂ), bounds fore which have

diglectric behavi_or of t_hese .heterostructures. Our hope is th@foen used for comparison with the FEM results. As noted in
this computer simulation will serve as a test case for thosg,e |ntroduction, for such descriptions, a number of authors
investigators who work in the subject of electromagneticy,ye developed various approaches delivering different lev-
properties of random heterogeneous materials. els of sophistication and predictive power. These estimates
narrow the composition range of possible effective permit-
B. Outlook tivity. Detailed treatments can be found in the references.
What is the future outiook? There are several nontrivial | "€ l0osest and simplest bounds are the so-called Wiener

extensions of the current work that would be interesting and@®n€-P0INt bound$ss),
which deserve future consideration. We have restricted our- el = (e7 %y + £5%) 2,
selves to discussing the 2D nondissipative case, i.e., rigid

disks in the plane and is real, but the real-space approach D= g by + e (A1)
we have described is more general, and is generalizable be- fu T f1¢r T E2f2

yond the simple model proposed here to more realistic 3D Hashin-Shtrikman two-point boundg74] for any
lossy media. This will provide the opportunity to identify d-dimensional two-phase isotropic mixture in whigh= &,
similarities and contrasts with the 2D case. The method lendsre

itself to the study of more general systems. For example, we 5
note that we have assumed equal radii for the disks. An issue e P =g1b +enpy— b1da(e2— €1) ,
which is of interest in random disk packing studies is to e1¢o+ eapy +(d = 1)eg
include in the simulations species with different diameters,
i.e., polydispersity with two or three different diameters or

h1o(e;— 81)2

(2 = -
with a continuous spread of disk diameters. Another direc- ey = €11+ g2y _ . (A2)
. - . g1y + exp1+(d = e,
tion would be to consider a more elaborate particle shape, _ _ -
e.g., ellipse, for which the local orientational order will  The three-point bounds on effective permittivitys,77

doubtless affect the permittivity of random packings. Be-Of anyd-dimensional two-phase isotropic heterogeneous me-
cause of the above-presented mathematical analogy, tifa are
present results are also relevant to the determination of other Brboles—81)
relevant macroscopigffective) quantities such as the effec- 8(L3):sl¢1+82¢2— L = —
: ivi i il B1o+ eacpy + (A= 1)(e7 by + 25" )
tive thermal conductivity and magnetic permeability of ran- 1927 291 1 P17 &2 P2
dom multiphase systenjd,9].
(3 = h1po(er— 81)2
ey =e1¢1t ey —
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